Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

49+42\sqrt{2}+9\left(\sqrt{2}\right)^{2}-\left(5-2\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+3\sqrt{2}\right)^{2}.
49+42\sqrt{2}+9\times 2-\left(5-2\sqrt{5}\right)^{2}
The square of \sqrt{2} is 2.
49+42\sqrt{2}+18-\left(5-2\sqrt{5}\right)^{2}
Multiply 9 and 2 to get 18.
67+42\sqrt{2}-\left(5-2\sqrt{5}\right)^{2}
Add 49 and 18 to get 67.
67+42\sqrt{2}-\left(25-20\sqrt{5}+4\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2\sqrt{5}\right)^{2}.
67+42\sqrt{2}-\left(25-20\sqrt{5}+4\times 5\right)
The square of \sqrt{5} is 5.
67+42\sqrt{2}-\left(25-20\sqrt{5}+20\right)
Multiply 4 and 5 to get 20.
67+42\sqrt{2}-\left(45-20\sqrt{5}\right)
Add 25 and 20 to get 45.
67+42\sqrt{2}-45+20\sqrt{5}
To find the opposite of 45-20\sqrt{5}, find the opposite of each term.
22+42\sqrt{2}+20\sqrt{5}
Subtract 45 from 67 to get 22.
49+42\sqrt{2}+9\left(\sqrt{2}\right)^{2}-\left(5-2\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+3\sqrt{2}\right)^{2}.
49+42\sqrt{2}+9\times 2-\left(5-2\sqrt{5}\right)^{2}
The square of \sqrt{2} is 2.
49+42\sqrt{2}+18-\left(5-2\sqrt{5}\right)^{2}
Multiply 9 and 2 to get 18.
67+42\sqrt{2}-\left(5-2\sqrt{5}\right)^{2}
Add 49 and 18 to get 67.
67+42\sqrt{2}-\left(25-20\sqrt{5}+4\left(\sqrt{5}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2\sqrt{5}\right)^{2}.
67+42\sqrt{2}-\left(25-20\sqrt{5}+4\times 5\right)
The square of \sqrt{5} is 5.
67+42\sqrt{2}-\left(25-20\sqrt{5}+20\right)
Multiply 4 and 5 to get 20.
67+42\sqrt{2}-\left(45-20\sqrt{5}\right)
Add 25 and 20 to get 45.
67+42\sqrt{2}-45+20\sqrt{5}
To find the opposite of 45-20\sqrt{5}, find the opposite of each term.
22+42\sqrt{2}+20\sqrt{5}
Subtract 45 from 67 to get 22.