Solve for x
x=\frac{\sqrt{6}-1}{3}\approx 0.483163248
x=\frac{-\sqrt{6}-1}{3}\approx -1.149829914
Graph
Share
Copied to clipboard
\left(6x+2\right)^{2}+4-4=28-4
Subtract 4 from both sides of the equation.
\left(6x+2\right)^{2}=28-4
Subtracting 4 from itself leaves 0.
\left(6x+2\right)^{2}=24
Subtract 4 from 28.
6x+2=2\sqrt{6} 6x+2=-2\sqrt{6}
Take the square root of both sides of the equation.
6x+2-2=2\sqrt{6}-2 6x+2-2=-2\sqrt{6}-2
Subtract 2 from both sides of the equation.
6x=2\sqrt{6}-2 6x=-2\sqrt{6}-2
Subtracting 2 from itself leaves 0.
6x=2\sqrt{6}-2
Subtract 2 from 2\sqrt{6}.
6x=-2\sqrt{6}-2
Subtract 2 from -2\sqrt{6}.
\frac{6x}{6}=\frac{2\sqrt{6}-2}{6} \frac{6x}{6}=\frac{-2\sqrt{6}-2}{6}
Divide both sides by 6.
x=\frac{2\sqrt{6}-2}{6} x=\frac{-2\sqrt{6}-2}{6}
Dividing by 6 undoes the multiplication by 6.
x=\frac{\sqrt{6}-1}{3}
Divide 2\sqrt{6}-2 by 6.
x=\frac{-\sqrt{6}-1}{3}
Divide -2\sqrt{6}-2 by 6.
x=\frac{\sqrt{6}-1}{3} x=\frac{-\sqrt{6}-1}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}