Solve for x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
\left(6-\sqrt{36-12x+x^{2}-4^{2}}\right)^{2}=x^{2}+4^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-x\right)^{2}.
\left(6-\sqrt{36-12x+x^{2}-16}\right)^{2}=x^{2}+4^{2}
Calculate 4 to the power of 2 and get 16.
\left(6-\sqrt{20-12x+x^{2}}\right)^{2}=x^{2}+4^{2}
Subtract 16 from 36 to get 20.
36-12\sqrt{20-12x+x^{2}}+\left(\sqrt{20-12x+x^{2}}\right)^{2}=x^{2}+4^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-\sqrt{20-12x+x^{2}}\right)^{2}.
36-12\sqrt{20-12x+x^{2}}+20-12x+x^{2}=x^{2}+4^{2}
Calculate \sqrt{20-12x+x^{2}} to the power of 2 and get 20-12x+x^{2}.
56-12\sqrt{20-12x+x^{2}}-12x+x^{2}=x^{2}+4^{2}
Add 36 and 20 to get 56.
56-12\sqrt{20-12x+x^{2}}-12x+x^{2}=x^{2}+16
Calculate 4 to the power of 2 and get 16.
56-12\sqrt{20-12x+x^{2}}-12x+x^{2}-x^{2}=16
Subtract x^{2} from both sides.
56-12\sqrt{20-12x+x^{2}}-12x=16
Combine x^{2} and -x^{2} to get 0.
-12\sqrt{20-12x+x^{2}}=16-\left(56-12x\right)
Subtract 56-12x from both sides of the equation.
-12\sqrt{20-12x+x^{2}}=16-56+12x
To find the opposite of 56-12x, find the opposite of each term.
-12\sqrt{20-12x+x^{2}}=-40+12x
Subtract 56 from 16 to get -40.
\left(-12\sqrt{20-12x+x^{2}}\right)^{2}=\left(-40+12x\right)^{2}
Square both sides of the equation.
\left(-12\right)^{2}\left(\sqrt{20-12x+x^{2}}\right)^{2}=\left(-40+12x\right)^{2}
Expand \left(-12\sqrt{20-12x+x^{2}}\right)^{2}.
144\left(\sqrt{20-12x+x^{2}}\right)^{2}=\left(-40+12x\right)^{2}
Calculate -12 to the power of 2 and get 144.
144\left(20-12x+x^{2}\right)=\left(-40+12x\right)^{2}
Calculate \sqrt{20-12x+x^{2}} to the power of 2 and get 20-12x+x^{2}.
2880-1728x+144x^{2}=\left(-40+12x\right)^{2}
Use the distributive property to multiply 144 by 20-12x+x^{2}.
2880-1728x+144x^{2}=1600-960x+144x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-40+12x\right)^{2}.
2880-1728x+144x^{2}-1600=-960x+144x^{2}
Subtract 1600 from both sides.
1280-1728x+144x^{2}=-960x+144x^{2}
Subtract 1600 from 2880 to get 1280.
1280-1728x+144x^{2}+960x=144x^{2}
Add 960x to both sides.
1280-768x+144x^{2}=144x^{2}
Combine -1728x and 960x to get -768x.
1280-768x+144x^{2}-144x^{2}=0
Subtract 144x^{2} from both sides.
1280-768x=0
Combine 144x^{2} and -144x^{2} to get 0.
-768x=-1280
Subtract 1280 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-1280}{-768}
Divide both sides by -768.
x=\frac{5}{3}
Reduce the fraction \frac{-1280}{-768} to lowest terms by extracting and canceling out -256.
\left(6-\sqrt{\left(6-\frac{5}{3}\right)^{2}-4^{2}}\right)^{2}=\left(\frac{5}{3}\right)^{2}+4^{2}
Substitute \frac{5}{3} for x in the equation \left(6-\sqrt{\left(6-x\right)^{2}-4^{2}}\right)^{2}=x^{2}+4^{2}.
\frac{169}{9}=\frac{169}{9}
Simplify. The value x=\frac{5}{3} satisfies the equation.
x=\frac{5}{3}
Equation -12\sqrt{x^{2}-12x+20}=12x-40 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}