Solve for x
x=2\sqrt{991}+68\approx 130.960304955
x=68-2\sqrt{991}\approx 5.039695045
Graph
Share
Copied to clipboard
36+12\left(-\frac{14+x}{8}\right)+\left(-\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6-\frac{14+x}{8}\right)^{2}.
36+\frac{-12\left(14+x\right)}{8}+\left(-\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Express 12\left(-\frac{14+x}{8}\right) as a single fraction.
36+\frac{-12\left(14+x\right)}{8}+\left(\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Calculate -\frac{14+x}{8} to the power of 2 and get \left(\frac{14+x}{8}\right)^{2}.
36-\frac{3}{2}\left(14+x\right)+\left(\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Divide -12\left(14+x\right) by 8 to get -\frac{3}{2}\left(14+x\right).
36-21-\frac{3}{2}x+\left(\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Use the distributive property to multiply -\frac{3}{2} by 14+x.
15-\frac{3}{2}x+\left(\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Subtract 21 from 36 to get 15.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
To raise \frac{14+x}{8} to a power, raise both numerator and denominator to the power and then divide.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+\left(18-\frac{42+x}{8}\right)^{2}=160
Add 4 and 14 to get 18.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+324+36\left(-\frac{42+x}{8}\right)+\left(-\frac{42+x}{8}\right)^{2}=160
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(18-\frac{42+x}{8}\right)^{2}.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+324+\frac{-36\left(42+x\right)}{8}+\left(-\frac{42+x}{8}\right)^{2}=160
Express 36\left(-\frac{42+x}{8}\right) as a single fraction.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+324+\frac{-36\left(42+x\right)}{8}+\left(\frac{42+x}{8}\right)^{2}=160
Calculate -\frac{42+x}{8} to the power of 2 and get \left(\frac{42+x}{8}\right)^{2}.
339-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+\frac{-36\left(42+x\right)}{8}+\left(\frac{42+x}{8}\right)^{2}=160
Add 15 and 324 to get 339.
339-\frac{3}{2}x+\frac{196+28x+x^{2}}{8^{2}}+\frac{-36\left(42+x\right)}{8}+\left(\frac{42+x}{8}\right)^{2}=160
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(14+x\right)^{2}.
339-\frac{3}{2}x+\frac{196+28x+x^{2}}{64}+\frac{-36\left(42+x\right)}{8}+\left(\frac{42+x}{8}\right)^{2}=160
Calculate 8 to the power of 2 and get 64.
339-\frac{3}{2}x+\frac{196+28x+x^{2}}{64}-\frac{9}{2}\left(42+x\right)+\left(\frac{42+x}{8}\right)^{2}=160
Divide -36\left(42+x\right) by 8 to get -\frac{9}{2}\left(42+x\right).
339-\frac{3}{2}x+\frac{196+28x+x^{2}}{64}-189-\frac{9}{2}x+\left(\frac{42+x}{8}\right)^{2}=160
Use the distributive property to multiply -\frac{9}{2} by 42+x.
150-\frac{3}{2}x+\frac{196+28x+x^{2}}{64}-\frac{9}{2}x+\left(\frac{42+x}{8}\right)^{2}=160
Subtract 189 from 339 to get 150.
150-6x+\frac{196+28x+x^{2}}{64}+\left(\frac{42+x}{8}\right)^{2}=160
Combine -\frac{3}{2}x and -\frac{9}{2}x to get -6x.
150-6x+\frac{196+28x+x^{2}}{64}+\frac{\left(42+x\right)^{2}}{8^{2}}=160
To raise \frac{42+x}{8} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(150-6x\right)\times 8^{2}}{8^{2}}+\frac{196+28x+x^{2}}{64}+\frac{\left(42+x\right)^{2}}{8^{2}}=160
To add or subtract expressions, expand them to make their denominators the same. Multiply 150-6x times \frac{8^{2}}{8^{2}}.
\frac{\left(150-6x\right)\times 8^{2}+\left(42+x\right)^{2}}{8^{2}}+\frac{196+28x+x^{2}}{64}=160
Since \frac{\left(150-6x\right)\times 8^{2}}{8^{2}} and \frac{\left(42+x\right)^{2}}{8^{2}} have the same denominator, add them by adding their numerators.
\frac{9600-384x+1764+84x+x^{2}}{8^{2}}+\frac{196+28x+x^{2}}{64}=160
Do the multiplications in \left(150-6x\right)\times 8^{2}+\left(42+x\right)^{2}.
\frac{11364-300x+x^{2}}{8^{2}}+\frac{196+28x+x^{2}}{64}=160
Combine like terms in 9600-384x+1764+84x+x^{2}.
\frac{11364-300x+x^{2}}{64}+\frac{196+28x+x^{2}}{64}=160
To add or subtract expressions, expand them to make their denominators the same. Expand 8^{2}.
\frac{11364-300x+x^{2}+196+28x+x^{2}}{64}=160
Since \frac{11364-300x+x^{2}}{64} and \frac{196+28x+x^{2}}{64} have the same denominator, add them by adding their numerators.
\frac{11560-272x+2x^{2}}{64}=160
Combine like terms in 11364-300x+x^{2}+196+28x+x^{2}.
\frac{1445}{8}-\frac{17}{4}x+\frac{1}{32}x^{2}=160
Divide each term of 11560-272x+2x^{2} by 64 to get \frac{1445}{8}-\frac{17}{4}x+\frac{1}{32}x^{2}.
\frac{1445}{8}-\frac{17}{4}x+\frac{1}{32}x^{2}-160=0
Subtract 160 from both sides.
\frac{165}{8}-\frac{17}{4}x+\frac{1}{32}x^{2}=0
Subtract 160 from \frac{1445}{8} to get \frac{165}{8}.
\frac{1}{32}x^{2}-\frac{17}{4}x+\frac{165}{8}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{\left(-\frac{17}{4}\right)^{2}-4\times \frac{1}{32}\times \frac{165}{8}}}{2\times \frac{1}{32}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{32} for a, -\frac{17}{4} for b, and \frac{165}{8} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{\frac{289}{16}-4\times \frac{1}{32}\times \frac{165}{8}}}{2\times \frac{1}{32}}
Square -\frac{17}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{\frac{289}{16}-\frac{1}{8}\times \frac{165}{8}}}{2\times \frac{1}{32}}
Multiply -4 times \frac{1}{32}.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{\frac{289}{16}-\frac{165}{64}}}{2\times \frac{1}{32}}
Multiply -\frac{1}{8} times \frac{165}{8} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{17}{4}\right)±\sqrt{\frac{991}{64}}}{2\times \frac{1}{32}}
Add \frac{289}{16} to -\frac{165}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{17}{4}\right)±\frac{\sqrt{991}}{8}}{2\times \frac{1}{32}}
Take the square root of \frac{991}{64}.
x=\frac{\frac{17}{4}±\frac{\sqrt{991}}{8}}{2\times \frac{1}{32}}
The opposite of -\frac{17}{4} is \frac{17}{4}.
x=\frac{\frac{17}{4}±\frac{\sqrt{991}}{8}}{\frac{1}{16}}
Multiply 2 times \frac{1}{32}.
x=\frac{\frac{\sqrt{991}}{8}+\frac{17}{4}}{\frac{1}{16}}
Now solve the equation x=\frac{\frac{17}{4}±\frac{\sqrt{991}}{8}}{\frac{1}{16}} when ± is plus. Add \frac{17}{4} to \frac{\sqrt{991}}{8}.
x=2\sqrt{991}+68
Divide \frac{17}{4}+\frac{\sqrt{991}}{8} by \frac{1}{16} by multiplying \frac{17}{4}+\frac{\sqrt{991}}{8} by the reciprocal of \frac{1}{16}.
x=\frac{-\frac{\sqrt{991}}{8}+\frac{17}{4}}{\frac{1}{16}}
Now solve the equation x=\frac{\frac{17}{4}±\frac{\sqrt{991}}{8}}{\frac{1}{16}} when ± is minus. Subtract \frac{\sqrt{991}}{8} from \frac{17}{4}.
x=68-2\sqrt{991}
Divide \frac{17}{4}-\frac{\sqrt{991}}{8} by \frac{1}{16} by multiplying \frac{17}{4}-\frac{\sqrt{991}}{8} by the reciprocal of \frac{1}{16}.
x=2\sqrt{991}+68 x=68-2\sqrt{991}
The equation is now solved.
36+12\left(-\frac{14+x}{8}\right)+\left(-\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6-\frac{14+x}{8}\right)^{2}.
36+\frac{-12\left(14+x\right)}{8}+\left(-\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Express 12\left(-\frac{14+x}{8}\right) as a single fraction.
36+\frac{-12\left(14+x\right)}{8}+\left(\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Calculate -\frac{14+x}{8} to the power of 2 and get \left(\frac{14+x}{8}\right)^{2}.
36-\frac{3}{2}\left(14+x\right)+\left(\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Divide -12\left(14+x\right) by 8 to get -\frac{3}{2}\left(14+x\right).
36-21-\frac{3}{2}x+\left(\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Use the distributive property to multiply -\frac{3}{2} by 14+x.
15-\frac{3}{2}x+\left(\frac{14+x}{8}\right)^{2}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
Subtract 21 from 36 to get 15.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+\left(4-\frac{42+x}{8}+14\right)^{2}=160
To raise \frac{14+x}{8} to a power, raise both numerator and denominator to the power and then divide.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+\left(18-\frac{42+x}{8}\right)^{2}=160
Add 4 and 14 to get 18.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+324+36\left(-\frac{42+x}{8}\right)+\left(-\frac{42+x}{8}\right)^{2}=160
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(18-\frac{42+x}{8}\right)^{2}.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+324+\frac{-36\left(42+x\right)}{8}+\left(-\frac{42+x}{8}\right)^{2}=160
Express 36\left(-\frac{42+x}{8}\right) as a single fraction.
15-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+324+\frac{-36\left(42+x\right)}{8}+\left(\frac{42+x}{8}\right)^{2}=160
Calculate -\frac{42+x}{8} to the power of 2 and get \left(\frac{42+x}{8}\right)^{2}.
339-\frac{3}{2}x+\frac{\left(14+x\right)^{2}}{8^{2}}+\frac{-36\left(42+x\right)}{8}+\left(\frac{42+x}{8}\right)^{2}=160
Add 15 and 324 to get 339.
339-\frac{3}{2}x+\frac{196+28x+x^{2}}{8^{2}}+\frac{-36\left(42+x\right)}{8}+\left(\frac{42+x}{8}\right)^{2}=160
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(14+x\right)^{2}.
339-\frac{3}{2}x+\frac{196+28x+x^{2}}{64}+\frac{-36\left(42+x\right)}{8}+\left(\frac{42+x}{8}\right)^{2}=160
Calculate 8 to the power of 2 and get 64.
339-\frac{3}{2}x+\frac{196+28x+x^{2}}{64}-\frac{9}{2}\left(42+x\right)+\left(\frac{42+x}{8}\right)^{2}=160
Divide -36\left(42+x\right) by 8 to get -\frac{9}{2}\left(42+x\right).
339-\frac{3}{2}x+\frac{196+28x+x^{2}}{64}-189-\frac{9}{2}x+\left(\frac{42+x}{8}\right)^{2}=160
Use the distributive property to multiply -\frac{9}{2} by 42+x.
150-\frac{3}{2}x+\frac{196+28x+x^{2}}{64}-\frac{9}{2}x+\left(\frac{42+x}{8}\right)^{2}=160
Subtract 189 from 339 to get 150.
150-6x+\frac{196+28x+x^{2}}{64}+\left(\frac{42+x}{8}\right)^{2}=160
Combine -\frac{3}{2}x and -\frac{9}{2}x to get -6x.
150-6x+\frac{196+28x+x^{2}}{64}+\frac{\left(42+x\right)^{2}}{8^{2}}=160
To raise \frac{42+x}{8} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(150-6x\right)\times 8^{2}}{8^{2}}+\frac{196+28x+x^{2}}{64}+\frac{\left(42+x\right)^{2}}{8^{2}}=160
To add or subtract expressions, expand them to make their denominators the same. Multiply 150-6x times \frac{8^{2}}{8^{2}}.
\frac{\left(150-6x\right)\times 8^{2}+\left(42+x\right)^{2}}{8^{2}}+\frac{196+28x+x^{2}}{64}=160
Since \frac{\left(150-6x\right)\times 8^{2}}{8^{2}} and \frac{\left(42+x\right)^{2}}{8^{2}} have the same denominator, add them by adding their numerators.
\frac{9600-384x+1764+84x+x^{2}}{8^{2}}+\frac{196+28x+x^{2}}{64}=160
Do the multiplications in \left(150-6x\right)\times 8^{2}+\left(42+x\right)^{2}.
\frac{11364-300x+x^{2}}{8^{2}}+\frac{196+28x+x^{2}}{64}=160
Combine like terms in 9600-384x+1764+84x+x^{2}.
\frac{11364-300x+x^{2}}{64}+\frac{196+28x+x^{2}}{64}=160
To add or subtract expressions, expand them to make their denominators the same. Expand 8^{2}.
\frac{11364-300x+x^{2}+196+28x+x^{2}}{64}=160
Since \frac{11364-300x+x^{2}}{64} and \frac{196+28x+x^{2}}{64} have the same denominator, add them by adding their numerators.
\frac{11560-272x+2x^{2}}{64}=160
Combine like terms in 11364-300x+x^{2}+196+28x+x^{2}.
\frac{1445}{8}-\frac{17}{4}x+\frac{1}{32}x^{2}=160
Divide each term of 11560-272x+2x^{2} by 64 to get \frac{1445}{8}-\frac{17}{4}x+\frac{1}{32}x^{2}.
-\frac{17}{4}x+\frac{1}{32}x^{2}=160-\frac{1445}{8}
Subtract \frac{1445}{8} from both sides.
-\frac{17}{4}x+\frac{1}{32}x^{2}=-\frac{165}{8}
Subtract \frac{1445}{8} from 160 to get -\frac{165}{8}.
\frac{1}{32}x^{2}-\frac{17}{4}x=-\frac{165}{8}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{32}x^{2}-\frac{17}{4}x}{\frac{1}{32}}=-\frac{\frac{165}{8}}{\frac{1}{32}}
Multiply both sides by 32.
x^{2}+\left(-\frac{\frac{17}{4}}{\frac{1}{32}}\right)x=-\frac{\frac{165}{8}}{\frac{1}{32}}
Dividing by \frac{1}{32} undoes the multiplication by \frac{1}{32}.
x^{2}-136x=-\frac{\frac{165}{8}}{\frac{1}{32}}
Divide -\frac{17}{4} by \frac{1}{32} by multiplying -\frac{17}{4} by the reciprocal of \frac{1}{32}.
x^{2}-136x=-660
Divide -\frac{165}{8} by \frac{1}{32} by multiplying -\frac{165}{8} by the reciprocal of \frac{1}{32}.
x^{2}-136x+\left(-68\right)^{2}=-660+\left(-68\right)^{2}
Divide -136, the coefficient of the x term, by 2 to get -68. Then add the square of -68 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-136x+4624=-660+4624
Square -68.
x^{2}-136x+4624=3964
Add -660 to 4624.
\left(x-68\right)^{2}=3964
Factor x^{2}-136x+4624. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-68\right)^{2}}=\sqrt{3964}
Take the square root of both sides of the equation.
x-68=2\sqrt{991} x-68=-2\sqrt{991}
Simplify.
x=2\sqrt{991}+68 x=68-2\sqrt{991}
Add 68 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}