Solve for x (complex solution)
x=\frac{7+\sqrt{151}i}{50}\approx 0.14+0.245764115i
x=\frac{-\sqrt{151}i+7}{50}\approx 0.14-0.245764115i
Graph
Share
Copied to clipboard
5^{2}x^{2}-7x+2=0
Expand \left(5x\right)^{2}.
25x^{2}-7x+2=0
Calculate 5 to the power of 2 and get 25.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 25\times 2}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -7 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 25\times 2}}{2\times 25}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-100\times 2}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-7\right)±\sqrt{49-200}}{2\times 25}
Multiply -100 times 2.
x=\frac{-\left(-7\right)±\sqrt{-151}}{2\times 25}
Add 49 to -200.
x=\frac{-\left(-7\right)±\sqrt{151}i}{2\times 25}
Take the square root of -151.
x=\frac{7±\sqrt{151}i}{2\times 25}
The opposite of -7 is 7.
x=\frac{7±\sqrt{151}i}{50}
Multiply 2 times 25.
x=\frac{7+\sqrt{151}i}{50}
Now solve the equation x=\frac{7±\sqrt{151}i}{50} when ± is plus. Add 7 to i\sqrt{151}.
x=\frac{-\sqrt{151}i+7}{50}
Now solve the equation x=\frac{7±\sqrt{151}i}{50} when ± is minus. Subtract i\sqrt{151} from 7.
x=\frac{7+\sqrt{151}i}{50} x=\frac{-\sqrt{151}i+7}{50}
The equation is now solved.
5^{2}x^{2}-7x+2=0
Expand \left(5x\right)^{2}.
25x^{2}-7x+2=0
Calculate 5 to the power of 2 and get 25.
25x^{2}-7x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
\frac{25x^{2}-7x}{25}=-\frac{2}{25}
Divide both sides by 25.
x^{2}-\frac{7}{25}x=-\frac{2}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{7}{25}x+\left(-\frac{7}{50}\right)^{2}=-\frac{2}{25}+\left(-\frac{7}{50}\right)^{2}
Divide -\frac{7}{25}, the coefficient of the x term, by 2 to get -\frac{7}{50}. Then add the square of -\frac{7}{50} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{25}x+\frac{49}{2500}=-\frac{2}{25}+\frac{49}{2500}
Square -\frac{7}{50} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{25}x+\frac{49}{2500}=-\frac{151}{2500}
Add -\frac{2}{25} to \frac{49}{2500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{50}\right)^{2}=-\frac{151}{2500}
Factor x^{2}-\frac{7}{25}x+\frac{49}{2500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{50}\right)^{2}}=\sqrt{-\frac{151}{2500}}
Take the square root of both sides of the equation.
x-\frac{7}{50}=\frac{\sqrt{151}i}{50} x-\frac{7}{50}=-\frac{\sqrt{151}i}{50}
Simplify.
x=\frac{7+\sqrt{151}i}{50} x=\frac{-\sqrt{151}i+7}{50}
Add \frac{7}{50} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}