Solve for x
x=\frac{\sqrt{433}-9}{16}\approx 0.738040753
x=\frac{-\sqrt{433}-9}{16}\approx -1.863040753
Graph
Share
Copied to clipboard
4^{2}x^{2}+18x=22
Expand \left(4x\right)^{2}.
16x^{2}+18x=22
Calculate 4 to the power of 2 and get 16.
16x^{2}+18x-22=0
Subtract 22 from both sides.
x=\frac{-18±\sqrt{18^{2}-4\times 16\left(-22\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 18 for b, and -22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 16\left(-22\right)}}{2\times 16}
Square 18.
x=\frac{-18±\sqrt{324-64\left(-22\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-18±\sqrt{324+1408}}{2\times 16}
Multiply -64 times -22.
x=\frac{-18±\sqrt{1732}}{2\times 16}
Add 324 to 1408.
x=\frac{-18±2\sqrt{433}}{2\times 16}
Take the square root of 1732.
x=\frac{-18±2\sqrt{433}}{32}
Multiply 2 times 16.
x=\frac{2\sqrt{433}-18}{32}
Now solve the equation x=\frac{-18±2\sqrt{433}}{32} when ± is plus. Add -18 to 2\sqrt{433}.
x=\frac{\sqrt{433}-9}{16}
Divide -18+2\sqrt{433} by 32.
x=\frac{-2\sqrt{433}-18}{32}
Now solve the equation x=\frac{-18±2\sqrt{433}}{32} when ± is minus. Subtract 2\sqrt{433} from -18.
x=\frac{-\sqrt{433}-9}{16}
Divide -18-2\sqrt{433} by 32.
x=\frac{\sqrt{433}-9}{16} x=\frac{-\sqrt{433}-9}{16}
The equation is now solved.
4^{2}x^{2}+18x=22
Expand \left(4x\right)^{2}.
16x^{2}+18x=22
Calculate 4 to the power of 2 and get 16.
\frac{16x^{2}+18x}{16}=\frac{22}{16}
Divide both sides by 16.
x^{2}+\frac{18}{16}x=\frac{22}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+\frac{9}{8}x=\frac{22}{16}
Reduce the fraction \frac{18}{16} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{9}{8}x=\frac{11}{8}
Reduce the fraction \frac{22}{16} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{9}{8}x+\left(\frac{9}{16}\right)^{2}=\frac{11}{8}+\left(\frac{9}{16}\right)^{2}
Divide \frac{9}{8}, the coefficient of the x term, by 2 to get \frac{9}{16}. Then add the square of \frac{9}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{8}x+\frac{81}{256}=\frac{11}{8}+\frac{81}{256}
Square \frac{9}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{8}x+\frac{81}{256}=\frac{433}{256}
Add \frac{11}{8} to \frac{81}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{16}\right)^{2}=\frac{433}{256}
Factor x^{2}+\frac{9}{8}x+\frac{81}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{16}\right)^{2}}=\sqrt{\frac{433}{256}}
Take the square root of both sides of the equation.
x+\frac{9}{16}=\frac{\sqrt{433}}{16} x+\frac{9}{16}=-\frac{\sqrt{433}}{16}
Simplify.
x=\frac{\sqrt{433}-9}{16} x=\frac{-\sqrt{433}-9}{16}
Subtract \frac{9}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}