Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Share
Copied to clipboard
9x^{2}-24x+16=9x-12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16-9x=-12
Subtract 9x from both sides.
9x^{2}-33x+16=-12
Combine -24x and -9x to get -33x.
9x^{2}-33x+16+12=0
Add 12 to both sides.
9x^{2}-33x+28=0
Add 16 and 12 to get 28.
a+b=-33 ab=9\times 28=252
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx+28. To find a and b, set up a system to be solved.
-1,-252 -2,-126 -3,-84 -4,-63 -6,-42 -7,-36 -9,-28 -12,-21 -14,-18
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 252.
-1-252=-253 -2-126=-128 -3-84=-87 -4-63=-67 -6-42=-48 -7-36=-43 -9-28=-37 -12-21=-33 -14-18=-32
Calculate the sum for each pair.
a=-21 b=-12
The solution is the pair that gives sum -33.
\left(9x^{2}-21x\right)+\left(-12x+28\right)
Rewrite 9x^{2}-33x+28 as \left(9x^{2}-21x\right)+\left(-12x+28\right).
3x\left(3x-7\right)-4\left(3x-7\right)
Factor out 3x in the first and -4 in the second group.
\left(3x-7\right)\left(3x-4\right)
Factor out common term 3x-7 by using distributive property.
x=\frac{7}{3} x=\frac{4}{3}
To find equation solutions, solve 3x-7=0 and 3x-4=0.
9x^{2}-24x+16=9x-12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16-9x=-12
Subtract 9x from both sides.
9x^{2}-33x+16=-12
Combine -24x and -9x to get -33x.
9x^{2}-33x+16+12=0
Add 12 to both sides.
9x^{2}-33x+28=0
Add 16 and 12 to get 28.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 9\times 28}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -33 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 9\times 28}}{2\times 9}
Square -33.
x=\frac{-\left(-33\right)±\sqrt{1089-36\times 28}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-33\right)±\sqrt{1089-1008}}{2\times 9}
Multiply -36 times 28.
x=\frac{-\left(-33\right)±\sqrt{81}}{2\times 9}
Add 1089 to -1008.
x=\frac{-\left(-33\right)±9}{2\times 9}
Take the square root of 81.
x=\frac{33±9}{2\times 9}
The opposite of -33 is 33.
x=\frac{33±9}{18}
Multiply 2 times 9.
x=\frac{42}{18}
Now solve the equation x=\frac{33±9}{18} when ± is plus. Add 33 to 9.
x=\frac{7}{3}
Reduce the fraction \frac{42}{18} to lowest terms by extracting and canceling out 6.
x=\frac{24}{18}
Now solve the equation x=\frac{33±9}{18} when ± is minus. Subtract 9 from 33.
x=\frac{4}{3}
Reduce the fraction \frac{24}{18} to lowest terms by extracting and canceling out 6.
x=\frac{7}{3} x=\frac{4}{3}
The equation is now solved.
9x^{2}-24x+16=9x-12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-4\right)^{2}.
9x^{2}-24x+16-9x=-12
Subtract 9x from both sides.
9x^{2}-33x+16=-12
Combine -24x and -9x to get -33x.
9x^{2}-33x=-12-16
Subtract 16 from both sides.
9x^{2}-33x=-28
Subtract 16 from -12 to get -28.
\frac{9x^{2}-33x}{9}=-\frac{28}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{33}{9}\right)x=-\frac{28}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{11}{3}x=-\frac{28}{9}
Reduce the fraction \frac{-33}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=-\frac{28}{9}+\left(-\frac{11}{6}\right)^{2}
Divide -\frac{11}{3}, the coefficient of the x term, by 2 to get -\frac{11}{6}. Then add the square of -\frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-\frac{28}{9}+\frac{121}{36}
Square -\frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{1}{4}
Add -\frac{28}{9} to \frac{121}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{6}\right)^{2}=\frac{1}{4}
Factor x^{2}-\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{6}=\frac{1}{2} x-\frac{11}{6}=-\frac{1}{2}
Simplify.
x=\frac{7}{3} x=\frac{4}{3}
Add \frac{11}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}