Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-2x+\frac{1}{9}-\sqrt{\frac{5}{18}+\frac{5}{2}}=-\frac{10}{6}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-\frac{1}{3}\right)^{2}.
9x^{2}-2x+\frac{1}{9}-\sqrt{\frac{25}{9}}=-\frac{10}{6}
Add \frac{5}{18} and \frac{5}{2} to get \frac{25}{9}.
9x^{2}-2x+\frac{1}{9}-\frac{5}{3}=-\frac{10}{6}
Rewrite the square root of the division \frac{25}{9} as the division of square roots \frac{\sqrt{25}}{\sqrt{9}}. Take the square root of both numerator and denominator.
9x^{2}-2x-\frac{14}{9}=-\frac{10}{6}
Subtract \frac{5}{3} from \frac{1}{9} to get -\frac{14}{9}.
9x^{2}-2x-\frac{14}{9}=-\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
9x^{2}-2x-\frac{14}{9}+\frac{5}{3}=0
Add \frac{5}{3} to both sides.
9x^{2}-2x+\frac{1}{9}=0
Add -\frac{14}{9} and \frac{5}{3} to get \frac{1}{9}.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 9\times \frac{1}{9}}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -2 for b, and \frac{1}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 9\times \frac{1}{9}}}{2\times 9}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-36\times \frac{1}{9}}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2\times 9}
Multiply -36 times \frac{1}{9}.
x=\frac{-\left(-2\right)±\sqrt{0}}{2\times 9}
Add 4 to -4.
x=-\frac{-2}{2\times 9}
Take the square root of 0.
x=\frac{2}{2\times 9}
The opposite of -2 is 2.
x=\frac{2}{18}
Multiply 2 times 9.
x=\frac{1}{9}
Reduce the fraction \frac{2}{18} to lowest terms by extracting and canceling out 2.
9x^{2}-2x+\frac{1}{9}-\sqrt{\frac{5}{18}+\frac{5}{2}}=-\frac{10}{6}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-\frac{1}{3}\right)^{2}.
9x^{2}-2x+\frac{1}{9}-\sqrt{\frac{25}{9}}=-\frac{10}{6}
Add \frac{5}{18} and \frac{5}{2} to get \frac{25}{9}.
9x^{2}-2x+\frac{1}{9}-\frac{5}{3}=-\frac{10}{6}
Rewrite the square root of the division \frac{25}{9} as the division of square roots \frac{\sqrt{25}}{\sqrt{9}}. Take the square root of both numerator and denominator.
9x^{2}-2x-\frac{14}{9}=-\frac{10}{6}
Subtract \frac{5}{3} from \frac{1}{9} to get -\frac{14}{9}.
9x^{2}-2x-\frac{14}{9}=-\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
9x^{2}-2x=-\frac{5}{3}+\frac{14}{9}
Add \frac{14}{9} to both sides.
9x^{2}-2x=-\frac{1}{9}
Add -\frac{5}{3} and \frac{14}{9} to get -\frac{1}{9}.
\frac{9x^{2}-2x}{9}=-\frac{\frac{1}{9}}{9}
Divide both sides by 9.
x^{2}-\frac{2}{9}x=-\frac{\frac{1}{9}}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{2}{9}x=-\frac{1}{81}
Divide -\frac{1}{9} by 9.
x^{2}-\frac{2}{9}x+\left(-\frac{1}{9}\right)^{2}=-\frac{1}{81}+\left(-\frac{1}{9}\right)^{2}
Divide -\frac{2}{9}, the coefficient of the x term, by 2 to get -\frac{1}{9}. Then add the square of -\frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{9}x+\frac{1}{81}=\frac{-1+1}{81}
Square -\frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{9}x+\frac{1}{81}=0
Add -\frac{1}{81} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{9}\right)^{2}=0
Factor x^{2}-\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{9}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{1}{9}=0 x-\frac{1}{9}=0
Simplify.
x=\frac{1}{9} x=\frac{1}{9}
Add \frac{1}{9} to both sides of the equation.
x=\frac{1}{9}
The equation is now solved. Solutions are the same.