Solve for x
x = \frac{\sqrt{241} + 5}{18} \approx 1.140231928
x=\frac{5-\sqrt{241}}{18}\approx -0.584676372
Graph
Share
Copied to clipboard
3^{2}x^{2}-5x-6=0
Expand \left(3x\right)^{2}.
9x^{2}-5x-6=0
Calculate 3 to the power of 2 and get 9.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 9\left(-6\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -5 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 9\left(-6\right)}}{2\times 9}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-36\left(-6\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-5\right)±\sqrt{25+216}}{2\times 9}
Multiply -36 times -6.
x=\frac{-\left(-5\right)±\sqrt{241}}{2\times 9}
Add 25 to 216.
x=\frac{5±\sqrt{241}}{2\times 9}
The opposite of -5 is 5.
x=\frac{5±\sqrt{241}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{241}+5}{18}
Now solve the equation x=\frac{5±\sqrt{241}}{18} when ± is plus. Add 5 to \sqrt{241}.
x=\frac{5-\sqrt{241}}{18}
Now solve the equation x=\frac{5±\sqrt{241}}{18} when ± is minus. Subtract \sqrt{241} from 5.
x=\frac{\sqrt{241}+5}{18} x=\frac{5-\sqrt{241}}{18}
The equation is now solved.
3^{2}x^{2}-5x-6=0
Expand \left(3x\right)^{2}.
9x^{2}-5x-6=0
Calculate 3 to the power of 2 and get 9.
9x^{2}-5x=6
Add 6 to both sides. Anything plus zero gives itself.
\frac{9x^{2}-5x}{9}=\frac{6}{9}
Divide both sides by 9.
x^{2}-\frac{5}{9}x=\frac{6}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{5}{9}x=\frac{2}{3}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{5}{9}x+\left(-\frac{5}{18}\right)^{2}=\frac{2}{3}+\left(-\frac{5}{18}\right)^{2}
Divide -\frac{5}{9}, the coefficient of the x term, by 2 to get -\frac{5}{18}. Then add the square of -\frac{5}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{9}x+\frac{25}{324}=\frac{2}{3}+\frac{25}{324}
Square -\frac{5}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{9}x+\frac{25}{324}=\frac{241}{324}
Add \frac{2}{3} to \frac{25}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{18}\right)^{2}=\frac{241}{324}
Factor x^{2}-\frac{5}{9}x+\frac{25}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{18}\right)^{2}}=\sqrt{\frac{241}{324}}
Take the square root of both sides of the equation.
x-\frac{5}{18}=\frac{\sqrt{241}}{18} x-\frac{5}{18}=-\frac{\sqrt{241}}{18}
Simplify.
x=\frac{\sqrt{241}+5}{18} x=\frac{5-\sqrt{241}}{18}
Add \frac{5}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}