Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3^{2}x^{2}+2x+9=0
Expand \left(3x\right)^{2}.
9x^{2}+2x+9=0
Calculate 3 to the power of 2 and get 9.
x=\frac{-2±\sqrt{2^{2}-4\times 9\times 9}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 2 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 9\times 9}}{2\times 9}
Square 2.
x=\frac{-2±\sqrt{4-36\times 9}}{2\times 9}
Multiply -4 times 9.
x=\frac{-2±\sqrt{4-324}}{2\times 9}
Multiply -36 times 9.
x=\frac{-2±\sqrt{-320}}{2\times 9}
Add 4 to -324.
x=\frac{-2±8\sqrt{5}i}{2\times 9}
Take the square root of -320.
x=\frac{-2±8\sqrt{5}i}{18}
Multiply 2 times 9.
x=\frac{-2+8\sqrt{5}i}{18}
Now solve the equation x=\frac{-2±8\sqrt{5}i}{18} when ± is plus. Add -2 to 8i\sqrt{5}.
x=\frac{-1+4\sqrt{5}i}{9}
Divide -2+8i\sqrt{5} by 18.
x=\frac{-8\sqrt{5}i-2}{18}
Now solve the equation x=\frac{-2±8\sqrt{5}i}{18} when ± is minus. Subtract 8i\sqrt{5} from -2.
x=\frac{-4\sqrt{5}i-1}{9}
Divide -2-8i\sqrt{5} by 18.
x=\frac{-1+4\sqrt{5}i}{9} x=\frac{-4\sqrt{5}i-1}{9}
The equation is now solved.
3^{2}x^{2}+2x+9=0
Expand \left(3x\right)^{2}.
9x^{2}+2x+9=0
Calculate 3 to the power of 2 and get 9.
9x^{2}+2x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{9x^{2}+2x}{9}=-\frac{9}{9}
Divide both sides by 9.
x^{2}+\frac{2}{9}x=-\frac{9}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{2}{9}x=-1
Divide -9 by 9.
x^{2}+\frac{2}{9}x+\left(\frac{1}{9}\right)^{2}=-1+\left(\frac{1}{9}\right)^{2}
Divide \frac{2}{9}, the coefficient of the x term, by 2 to get \frac{1}{9}. Then add the square of \frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{9}x+\frac{1}{81}=-1+\frac{1}{81}
Square \frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{9}x+\frac{1}{81}=-\frac{80}{81}
Add -1 to \frac{1}{81}.
\left(x+\frac{1}{9}\right)^{2}=-\frac{80}{81}
Factor x^{2}+\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{9}\right)^{2}}=\sqrt{-\frac{80}{81}}
Take the square root of both sides of the equation.
x+\frac{1}{9}=\frac{4\sqrt{5}i}{9} x+\frac{1}{9}=-\frac{4\sqrt{5}i}{9}
Simplify.
x=\frac{-1+4\sqrt{5}i}{9} x=\frac{-4\sqrt{5}i-1}{9}
Subtract \frac{1}{9} from both sides of the equation.