Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3^{2}x^{2}+6^{2}=\left(5x\right)^{2}
Expand \left(3x\right)^{2}.
9x^{2}+6^{2}=\left(5x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x^{2}+36=\left(5x\right)^{2}
Calculate 6 to the power of 2 and get 36.
9x^{2}+36=5^{2}x^{2}
Expand \left(5x\right)^{2}.
9x^{2}+36=25x^{2}
Calculate 5 to the power of 2 and get 25.
9x^{2}+36-25x^{2}=0
Subtract 25x^{2} from both sides.
-16x^{2}+36=0
Combine 9x^{2} and -25x^{2} to get -16x^{2}.
-16x^{2}=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-36}{-16}
Divide both sides by -16.
x^{2}=\frac{9}{4}
Reduce the fraction \frac{-36}{-16} to lowest terms by extracting and canceling out -4.
x=\frac{3}{2} x=-\frac{3}{2}
Take the square root of both sides of the equation.
3^{2}x^{2}+6^{2}=\left(5x\right)^{2}
Expand \left(3x\right)^{2}.
9x^{2}+6^{2}=\left(5x\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x^{2}+36=\left(5x\right)^{2}
Calculate 6 to the power of 2 and get 36.
9x^{2}+36=5^{2}x^{2}
Expand \left(5x\right)^{2}.
9x^{2}+36=25x^{2}
Calculate 5 to the power of 2 and get 25.
9x^{2}+36-25x^{2}=0
Subtract 25x^{2} from both sides.
-16x^{2}+36=0
Combine 9x^{2} and -25x^{2} to get -16x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)\times 36}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 0 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-16\right)\times 36}}{2\left(-16\right)}
Square 0.
x=\frac{0±\sqrt{64\times 36}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{0±\sqrt{2304}}{2\left(-16\right)}
Multiply 64 times 36.
x=\frac{0±48}{2\left(-16\right)}
Take the square root of 2304.
x=\frac{0±48}{-32}
Multiply 2 times -16.
x=-\frac{3}{2}
Now solve the equation x=\frac{0±48}{-32} when ± is plus. Reduce the fraction \frac{48}{-32} to lowest terms by extracting and canceling out 16.
x=\frac{3}{2}
Now solve the equation x=\frac{0±48}{-32} when ± is minus. Reduce the fraction \frac{-48}{-32} to lowest terms by extracting and canceling out 16.
x=-\frac{3}{2} x=\frac{3}{2}
The equation is now solved.