Solve for t
t=1
t = \frac{11}{5} = 2\frac{1}{5} = 2.2
Share
Copied to clipboard
3^{2}\left(\sqrt{5}\right)^{2}=25t^{2}-80t+100
Expand \left(3\sqrt{5}\right)^{2}.
9\left(\sqrt{5}\right)^{2}=25t^{2}-80t+100
Calculate 3 to the power of 2 and get 9.
9\times 5=25t^{2}-80t+100
The square of \sqrt{5} is 5.
45=25t^{2}-80t+100
Multiply 9 and 5 to get 45.
25t^{2}-80t+100=45
Swap sides so that all variable terms are on the left hand side.
25t^{2}-80t+100-45=0
Subtract 45 from both sides.
25t^{2}-80t+55=0
Subtract 45 from 100 to get 55.
t=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 25\times 55}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -80 for b, and 55 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-80\right)±\sqrt{6400-4\times 25\times 55}}{2\times 25}
Square -80.
t=\frac{-\left(-80\right)±\sqrt{6400-100\times 55}}{2\times 25}
Multiply -4 times 25.
t=\frac{-\left(-80\right)±\sqrt{6400-5500}}{2\times 25}
Multiply -100 times 55.
t=\frac{-\left(-80\right)±\sqrt{900}}{2\times 25}
Add 6400 to -5500.
t=\frac{-\left(-80\right)±30}{2\times 25}
Take the square root of 900.
t=\frac{80±30}{2\times 25}
The opposite of -80 is 80.
t=\frac{80±30}{50}
Multiply 2 times 25.
t=\frac{110}{50}
Now solve the equation t=\frac{80±30}{50} when ± is plus. Add 80 to 30.
t=\frac{11}{5}
Reduce the fraction \frac{110}{50} to lowest terms by extracting and canceling out 10.
t=\frac{50}{50}
Now solve the equation t=\frac{80±30}{50} when ± is minus. Subtract 30 from 80.
t=1
Divide 50 by 50.
t=\frac{11}{5} t=1
The equation is now solved.
3^{2}\left(\sqrt{5}\right)^{2}=25t^{2}-80t+100
Expand \left(3\sqrt{5}\right)^{2}.
9\left(\sqrt{5}\right)^{2}=25t^{2}-80t+100
Calculate 3 to the power of 2 and get 9.
9\times 5=25t^{2}-80t+100
The square of \sqrt{5} is 5.
45=25t^{2}-80t+100
Multiply 9 and 5 to get 45.
25t^{2}-80t+100=45
Swap sides so that all variable terms are on the left hand side.
25t^{2}-80t=45-100
Subtract 100 from both sides.
25t^{2}-80t=-55
Subtract 100 from 45 to get -55.
\frac{25t^{2}-80t}{25}=-\frac{55}{25}
Divide both sides by 25.
t^{2}+\left(-\frac{80}{25}\right)t=-\frac{55}{25}
Dividing by 25 undoes the multiplication by 25.
t^{2}-\frac{16}{5}t=-\frac{55}{25}
Reduce the fraction \frac{-80}{25} to lowest terms by extracting and canceling out 5.
t^{2}-\frac{16}{5}t=-\frac{11}{5}
Reduce the fraction \frac{-55}{25} to lowest terms by extracting and canceling out 5.
t^{2}-\frac{16}{5}t+\left(-\frac{8}{5}\right)^{2}=-\frac{11}{5}+\left(-\frac{8}{5}\right)^{2}
Divide -\frac{16}{5}, the coefficient of the x term, by 2 to get -\frac{8}{5}. Then add the square of -\frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{16}{5}t+\frac{64}{25}=-\frac{11}{5}+\frac{64}{25}
Square -\frac{8}{5} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{16}{5}t+\frac{64}{25}=\frac{9}{25}
Add -\frac{11}{5} to \frac{64}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{8}{5}\right)^{2}=\frac{9}{25}
Factor t^{2}-\frac{16}{5}t+\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{8}{5}\right)^{2}}=\sqrt{\frac{9}{25}}
Take the square root of both sides of the equation.
t-\frac{8}{5}=\frac{3}{5} t-\frac{8}{5}=-\frac{3}{5}
Simplify.
t=\frac{11}{5} t=1
Add \frac{8}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}