Solve for x
x<4
Graph
Share
Copied to clipboard
4x^{2}-32x+64-4\left(x-2\right)\left(x-4\right)>0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-8\right)^{2}.
4x^{2}-32x+64+\left(-4x+8\right)\left(x-4\right)>0
Use the distributive property to multiply -4 by x-2.
4x^{2}-32x+64-4x^{2}+24x-32>0
Use the distributive property to multiply -4x+8 by x-4 and combine like terms.
-32x+64+24x-32>0
Combine 4x^{2} and -4x^{2} to get 0.
-8x+64-32>0
Combine -32x and 24x to get -8x.
-8x+32>0
Subtract 32 from 64 to get 32.
-8x>-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
x<\frac{-32}{-8}
Divide both sides by -8. Since -8 is negative, the inequality direction is changed.
x<4
Divide -32 by -8 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}