Solve for x
x = \frac{21}{2} = 10\frac{1}{2} = 10.5
x=0
Graph
Share
Copied to clipboard
4x^{2}-28x+49-7\left(7+2x\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-7\right)^{2}.
4x^{2}-28x+49-49-14x=0
Use the distributive property to multiply -7 by 7+2x.
4x^{2}-28x-14x=0
Subtract 49 from 49 to get 0.
4x^{2}-42x=0
Combine -28x and -14x to get -42x.
x\left(4x-42\right)=0
Factor out x.
x=0 x=\frac{21}{2}
To find equation solutions, solve x=0 and 4x-42=0.
4x^{2}-28x+49-7\left(7+2x\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-7\right)^{2}.
4x^{2}-28x+49-49-14x=0
Use the distributive property to multiply -7 by 7+2x.
4x^{2}-28x-14x=0
Subtract 49 from 49 to get 0.
4x^{2}-42x=0
Combine -28x and -14x to get -42x.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -42 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-42\right)±42}{2\times 4}
Take the square root of \left(-42\right)^{2}.
x=\frac{42±42}{2\times 4}
The opposite of -42 is 42.
x=\frac{42±42}{8}
Multiply 2 times 4.
x=\frac{84}{8}
Now solve the equation x=\frac{42±42}{8} when ± is plus. Add 42 to 42.
x=\frac{21}{2}
Reduce the fraction \frac{84}{8} to lowest terms by extracting and canceling out 4.
x=\frac{0}{8}
Now solve the equation x=\frac{42±42}{8} when ± is minus. Subtract 42 from 42.
x=0
Divide 0 by 8.
x=\frac{21}{2} x=0
The equation is now solved.
4x^{2}-28x+49-7\left(7+2x\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-7\right)^{2}.
4x^{2}-28x+49-49-14x=0
Use the distributive property to multiply -7 by 7+2x.
4x^{2}-28x-14x=0
Subtract 49 from 49 to get 0.
4x^{2}-42x=0
Combine -28x and -14x to get -42x.
\frac{4x^{2}-42x}{4}=\frac{0}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{42}{4}\right)x=\frac{0}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{21}{2}x=\frac{0}{4}
Reduce the fraction \frac{-42}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{21}{2}x=0
Divide 0 by 4.
x^{2}-\frac{21}{2}x+\left(-\frac{21}{4}\right)^{2}=\left(-\frac{21}{4}\right)^{2}
Divide -\frac{21}{2}, the coefficient of the x term, by 2 to get -\frac{21}{4}. Then add the square of -\frac{21}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{21}{2}x+\frac{441}{16}=\frac{441}{16}
Square -\frac{21}{4} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{21}{4}\right)^{2}=\frac{441}{16}
Factor x^{2}-\frac{21}{2}x+\frac{441}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{4}\right)^{2}}=\sqrt{\frac{441}{16}}
Take the square root of both sides of the equation.
x-\frac{21}{4}=\frac{21}{4} x-\frac{21}{4}=-\frac{21}{4}
Simplify.
x=\frac{21}{2} x=0
Add \frac{21}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}