Solve for x
x=\frac{2}{3}\approx 0.666666667
x=8
Graph
Share
Copied to clipboard
4x^{2}-20x+25=\left(x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-20x+25=x^{2}+6x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}-20x+25-x^{2}=6x+9
Subtract x^{2} from both sides.
3x^{2}-20x+25=6x+9
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-20x+25-6x=9
Subtract 6x from both sides.
3x^{2}-26x+25=9
Combine -20x and -6x to get -26x.
3x^{2}-26x+25-9=0
Subtract 9 from both sides.
3x^{2}-26x+16=0
Subtract 9 from 25 to get 16.
a+b=-26 ab=3\times 16=48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+16. To find a and b, set up a system to be solved.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Calculate the sum for each pair.
a=-24 b=-2
The solution is the pair that gives sum -26.
\left(3x^{2}-24x\right)+\left(-2x+16\right)
Rewrite 3x^{2}-26x+16 as \left(3x^{2}-24x\right)+\left(-2x+16\right).
3x\left(x-8\right)-2\left(x-8\right)
Factor out 3x in the first and -2 in the second group.
\left(x-8\right)\left(3x-2\right)
Factor out common term x-8 by using distributive property.
x=8 x=\frac{2}{3}
To find equation solutions, solve x-8=0 and 3x-2=0.
4x^{2}-20x+25=\left(x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-20x+25=x^{2}+6x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}-20x+25-x^{2}=6x+9
Subtract x^{2} from both sides.
3x^{2}-20x+25=6x+9
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-20x+25-6x=9
Subtract 6x from both sides.
3x^{2}-26x+25=9
Combine -20x and -6x to get -26x.
3x^{2}-26x+25-9=0
Subtract 9 from both sides.
3x^{2}-26x+16=0
Subtract 9 from 25 to get 16.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 3\times 16}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -26 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 3\times 16}}{2\times 3}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-12\times 16}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-26\right)±\sqrt{676-192}}{2\times 3}
Multiply -12 times 16.
x=\frac{-\left(-26\right)±\sqrt{484}}{2\times 3}
Add 676 to -192.
x=\frac{-\left(-26\right)±22}{2\times 3}
Take the square root of 484.
x=\frac{26±22}{2\times 3}
The opposite of -26 is 26.
x=\frac{26±22}{6}
Multiply 2 times 3.
x=\frac{48}{6}
Now solve the equation x=\frac{26±22}{6} when ± is plus. Add 26 to 22.
x=8
Divide 48 by 6.
x=\frac{4}{6}
Now solve the equation x=\frac{26±22}{6} when ± is minus. Subtract 22 from 26.
x=\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
x=8 x=\frac{2}{3}
The equation is now solved.
4x^{2}-20x+25=\left(x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-20x+25=x^{2}+6x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
4x^{2}-20x+25-x^{2}=6x+9
Subtract x^{2} from both sides.
3x^{2}-20x+25=6x+9
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-20x+25-6x=9
Subtract 6x from both sides.
3x^{2}-26x+25=9
Combine -20x and -6x to get -26x.
3x^{2}-26x=9-25
Subtract 25 from both sides.
3x^{2}-26x=-16
Subtract 25 from 9 to get -16.
\frac{3x^{2}-26x}{3}=-\frac{16}{3}
Divide both sides by 3.
x^{2}-\frac{26}{3}x=-\frac{16}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{26}{3}x+\left(-\frac{13}{3}\right)^{2}=-\frac{16}{3}+\left(-\frac{13}{3}\right)^{2}
Divide -\frac{26}{3}, the coefficient of the x term, by 2 to get -\frac{13}{3}. Then add the square of -\frac{13}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{26}{3}x+\frac{169}{9}=-\frac{16}{3}+\frac{169}{9}
Square -\frac{13}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{26}{3}x+\frac{169}{9}=\frac{121}{9}
Add -\frac{16}{3} to \frac{169}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{3}\right)^{2}=\frac{121}{9}
Factor x^{2}-\frac{26}{3}x+\frac{169}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{3}\right)^{2}}=\sqrt{\frac{121}{9}}
Take the square root of both sides of the equation.
x-\frac{13}{3}=\frac{11}{3} x-\frac{13}{3}=-\frac{11}{3}
Simplify.
x=8 x=\frac{2}{3}
Add \frac{13}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}