Solve for x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
4x^{2}-12x+9=2\left(2x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=4x-6
Use the distributive property to multiply 2 by 2x-3.
4x^{2}-12x+9-4x=-6
Subtract 4x from both sides.
4x^{2}-16x+9=-6
Combine -12x and -4x to get -16x.
4x^{2}-16x+9+6=0
Add 6 to both sides.
4x^{2}-16x+15=0
Add 9 and 6 to get 15.
a+b=-16 ab=4\times 15=60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 60.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
Calculate the sum for each pair.
a=-10 b=-6
The solution is the pair that gives sum -16.
\left(4x^{2}-10x\right)+\left(-6x+15\right)
Rewrite 4x^{2}-16x+15 as \left(4x^{2}-10x\right)+\left(-6x+15\right).
2x\left(2x-5\right)-3\left(2x-5\right)
Factor out 2x in the first and -3 in the second group.
\left(2x-5\right)\left(2x-3\right)
Factor out common term 2x-5 by using distributive property.
x=\frac{5}{2} x=\frac{3}{2}
To find equation solutions, solve 2x-5=0 and 2x-3=0.
4x^{2}-12x+9=2\left(2x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=4x-6
Use the distributive property to multiply 2 by 2x-3.
4x^{2}-12x+9-4x=-6
Subtract 4x from both sides.
4x^{2}-16x+9=-6
Combine -12x and -4x to get -16x.
4x^{2}-16x+9+6=0
Add 6 to both sides.
4x^{2}-16x+15=0
Add 9 and 6 to get 15.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 15}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -16 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 15}}{2\times 4}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-16\times 15}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-16\right)±\sqrt{256-240}}{2\times 4}
Multiply -16 times 15.
x=\frac{-\left(-16\right)±\sqrt{16}}{2\times 4}
Add 256 to -240.
x=\frac{-\left(-16\right)±4}{2\times 4}
Take the square root of 16.
x=\frac{16±4}{2\times 4}
The opposite of -16 is 16.
x=\frac{16±4}{8}
Multiply 2 times 4.
x=\frac{20}{8}
Now solve the equation x=\frac{16±4}{8} when ± is plus. Add 16 to 4.
x=\frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
x=\frac{12}{8}
Now solve the equation x=\frac{16±4}{8} when ± is minus. Subtract 4 from 16.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x=\frac{5}{2} x=\frac{3}{2}
The equation is now solved.
4x^{2}-12x+9=2\left(2x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=4x-6
Use the distributive property to multiply 2 by 2x-3.
4x^{2}-12x+9-4x=-6
Subtract 4x from both sides.
4x^{2}-16x+9=-6
Combine -12x and -4x to get -16x.
4x^{2}-16x=-6-9
Subtract 9 from both sides.
4x^{2}-16x=-15
Subtract 9 from -6 to get -15.
\frac{4x^{2}-16x}{4}=-\frac{15}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{16}{4}\right)x=-\frac{15}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-4x=-\frac{15}{4}
Divide -16 by 4.
x^{2}-4x+\left(-2\right)^{2}=-\frac{15}{4}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{15}{4}+4
Square -2.
x^{2}-4x+4=\frac{1}{4}
Add -\frac{15}{4} to 4.
\left(x-2\right)^{2}=\frac{1}{4}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-2=\frac{1}{2} x-2=-\frac{1}{2}
Simplify.
x=\frac{5}{2} x=\frac{3}{2}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}