Solve for x
x>\frac{13}{12}
Graph
Share
Copied to clipboard
4x^{2}-12x+9<4\left(x-1\right)\left(1+x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9<\left(4x-4\right)\left(1+x\right)
Use the distributive property to multiply 4 by x-1.
4x^{2}-12x+9<4x^{2}-4
Use the distributive property to multiply 4x-4 by 1+x and combine like terms.
4x^{2}-12x+9-4x^{2}<-4
Subtract 4x^{2} from both sides.
-12x+9<-4
Combine 4x^{2} and -4x^{2} to get 0.
-12x<-4-9
Subtract 9 from both sides.
-12x<-13
Subtract 9 from -4 to get -13.
x>\frac{-13}{-12}
Divide both sides by -12. Since -12 is negative, the inequality direction is changed.
x>\frac{13}{12}
Fraction \frac{-13}{-12} can be simplified to \frac{13}{12} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}