Solve for x (complex solution)
x=3+\sqrt{3}i\approx 3+1.732050808i
x=-\sqrt{3}i+3\approx 3-1.732050808i
Graph
Share
Copied to clipboard
4x^{2}-48x+144+4x^{2}=48
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-12\right)^{2}.
8x^{2}-48x+144=48
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}-48x+144-48=0
Subtract 48 from both sides.
8x^{2}-48x+96=0
Subtract 48 from 144 to get 96.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 8\times 96}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -48 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 8\times 96}}{2\times 8}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304-32\times 96}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-48\right)±\sqrt{2304-3072}}{2\times 8}
Multiply -32 times 96.
x=\frac{-\left(-48\right)±\sqrt{-768}}{2\times 8}
Add 2304 to -3072.
x=\frac{-\left(-48\right)±16\sqrt{3}i}{2\times 8}
Take the square root of -768.
x=\frac{48±16\sqrt{3}i}{2\times 8}
The opposite of -48 is 48.
x=\frac{48±16\sqrt{3}i}{16}
Multiply 2 times 8.
x=\frac{48+16\sqrt{3}i}{16}
Now solve the equation x=\frac{48±16\sqrt{3}i}{16} when ± is plus. Add 48 to 16i\sqrt{3}.
x=3+\sqrt{3}i
Divide 48+16i\sqrt{3} by 16.
x=\frac{-16\sqrt{3}i+48}{16}
Now solve the equation x=\frac{48±16\sqrt{3}i}{16} when ± is minus. Subtract 16i\sqrt{3} from 48.
x=-\sqrt{3}i+3
Divide 48-16i\sqrt{3} by 16.
x=3+\sqrt{3}i x=-\sqrt{3}i+3
The equation is now solved.
4x^{2}-48x+144+4x^{2}=48
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-12\right)^{2}.
8x^{2}-48x+144=48
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}-48x=48-144
Subtract 144 from both sides.
8x^{2}-48x=-96
Subtract 144 from 48 to get -96.
\frac{8x^{2}-48x}{8}=-\frac{96}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{48}{8}\right)x=-\frac{96}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-6x=-\frac{96}{8}
Divide -48 by 8.
x^{2}-6x=-12
Divide -96 by 8.
x^{2}-6x+\left(-3\right)^{2}=-12+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-12+9
Square -3.
x^{2}-6x+9=-3
Add -12 to 9.
\left(x-3\right)^{2}=-3
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-3}
Take the square root of both sides of the equation.
x-3=\sqrt{3}i x-3=-\sqrt{3}i
Simplify.
x=3+\sqrt{3}i x=-\sqrt{3}i+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}