Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-48x+144+4x^{2}=48
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-12\right)^{2}.
8x^{2}-48x+144=48
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}-48x+144-48=0
Subtract 48 from both sides.
8x^{2}-48x+96=0
Subtract 48 from 144 to get 96.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 8\times 96}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -48 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 8\times 96}}{2\times 8}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304-32\times 96}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-48\right)±\sqrt{2304-3072}}{2\times 8}
Multiply -32 times 96.
x=\frac{-\left(-48\right)±\sqrt{-768}}{2\times 8}
Add 2304 to -3072.
x=\frac{-\left(-48\right)±16\sqrt{3}i}{2\times 8}
Take the square root of -768.
x=\frac{48±16\sqrt{3}i}{2\times 8}
The opposite of -48 is 48.
x=\frac{48±16\sqrt{3}i}{16}
Multiply 2 times 8.
x=\frac{48+16\sqrt{3}i}{16}
Now solve the equation x=\frac{48±16\sqrt{3}i}{16} when ± is plus. Add 48 to 16i\sqrt{3}.
x=3+\sqrt{3}i
Divide 48+16i\sqrt{3} by 16.
x=\frac{-16\sqrt{3}i+48}{16}
Now solve the equation x=\frac{48±16\sqrt{3}i}{16} when ± is minus. Subtract 16i\sqrt{3} from 48.
x=-\sqrt{3}i+3
Divide 48-16i\sqrt{3} by 16.
x=3+\sqrt{3}i x=-\sqrt{3}i+3
The equation is now solved.
4x^{2}-48x+144+4x^{2}=48
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-12\right)^{2}.
8x^{2}-48x+144=48
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}-48x=48-144
Subtract 144 from both sides.
8x^{2}-48x=-96
Subtract 144 from 48 to get -96.
\frac{8x^{2}-48x}{8}=-\frac{96}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{48}{8}\right)x=-\frac{96}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-6x=-\frac{96}{8}
Divide -48 by 8.
x^{2}-6x=-12
Divide -96 by 8.
x^{2}-6x+\left(-3\right)^{2}=-12+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-12+9
Square -3.
x^{2}-6x+9=-3
Add -12 to 9.
\left(x-3\right)^{2}=-3
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-3}
Take the square root of both sides of the equation.
x-3=\sqrt{3}i x-3=-\sqrt{3}i
Simplify.
x=3+\sqrt{3}i x=-\sqrt{3}i+3
Add 3 to both sides of the equation.