Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{4x^{2}+12x-z+9}{2x+3}\text{, }&x\neq -\frac{3}{2}\\y\in \mathrm{C}\text{, }&z=0\text{ and }x=-\frac{3}{2}\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{4x^{2}+12x-z+9}{2x+3}\text{, }&x\neq -\frac{3}{2}\\y\in \mathrm{R}\text{, }&z=0\text{ and }x=-\frac{3}{2}\end{matrix}\right.
Solve for x (complex solution)
x=\frac{\sqrt{y^{2}+4z}}{4}-\frac{y}{4}-\frac{3}{2}
x=-\frac{\sqrt{y^{2}+4z}}{4}-\frac{y}{4}-\frac{3}{2}
Solve for x
x=-\frac{\sqrt{y^{2}+4z}}{4}-\frac{y}{4}-\frac{3}{2}
x=\frac{\sqrt{y^{2}+4z}}{4}-\frac{y}{4}-\frac{3}{2}\text{, }z\geq -\frac{y^{2}}{4}
Share
Copied to clipboard
4x^{2}+12x+9+y\left(2x+3\right)-z=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9+2yx+3y-z=0
Use the distributive property to multiply y by 2x+3.
12x+9+2yx+3y-z=-4x^{2}
Subtract 4x^{2} from both sides. Anything subtracted from zero gives its negation.
9+2yx+3y-z=-4x^{2}-12x
Subtract 12x from both sides.
2yx+3y-z=-4x^{2}-12x-9
Subtract 9 from both sides.
2yx+3y=-4x^{2}-12x-9+z
Add z to both sides.
\left(2x+3\right)y=-4x^{2}-12x-9+z
Combine all terms containing y.
\left(2x+3\right)y=-4x^{2}-12x+z-9
The equation is in standard form.
\frac{\left(2x+3\right)y}{2x+3}=\frac{-\left(2x+3\right)^{2}+z}{2x+3}
Divide both sides by 2x+3.
y=\frac{-\left(2x+3\right)^{2}+z}{2x+3}
Dividing by 2x+3 undoes the multiplication by 2x+3.
y=\frac{-4x^{2}-12x+z-9}{2x+3}
Divide z-\left(2x+3\right)^{2} by 2x+3.
4x^{2}+12x+9+y\left(2x+3\right)-z=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9+2yx+3y-z=0
Use the distributive property to multiply y by 2x+3.
12x+9+2yx+3y-z=-4x^{2}
Subtract 4x^{2} from both sides. Anything subtracted from zero gives its negation.
9+2yx+3y-z=-4x^{2}-12x
Subtract 12x from both sides.
2yx+3y-z=-4x^{2}-12x-9
Subtract 9 from both sides.
2yx+3y=-4x^{2}-12x-9+z
Add z to both sides.
\left(2x+3\right)y=-4x^{2}-12x-9+z
Combine all terms containing y.
\left(2x+3\right)y=-4x^{2}-12x+z-9
The equation is in standard form.
\frac{\left(2x+3\right)y}{2x+3}=\frac{-\left(2x+3\right)^{2}+z}{2x+3}
Divide both sides by 2x+3.
y=\frac{-\left(2x+3\right)^{2}+z}{2x+3}
Dividing by 2x+3 undoes the multiplication by 2x+3.
y=\frac{-4x^{2}-12x+z-9}{2x+3}
Divide z-\left(2x+3\right)^{2} by 2x+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}