Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x+1=2x-1^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=2x-1
Calculate 1 to the power of 2 and get 1.
4x^{2}+4x+1-2x=-1
Subtract 2x from both sides.
4x^{2}+2x+1=-1
Combine 4x and -2x to get 2x.
4x^{2}+2x+1+1=0
Add 1 to both sides.
4x^{2}+2x+2=0
Add 1 and 1 to get 2.
x=\frac{-2±\sqrt{2^{2}-4\times 4\times 2}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 2 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 4\times 2}}{2\times 4}
Square 2.
x=\frac{-2±\sqrt{4-16\times 2}}{2\times 4}
Multiply -4 times 4.
x=\frac{-2±\sqrt{4-32}}{2\times 4}
Multiply -16 times 2.
x=\frac{-2±\sqrt{-28}}{2\times 4}
Add 4 to -32.
x=\frac{-2±2\sqrt{7}i}{2\times 4}
Take the square root of -28.
x=\frac{-2±2\sqrt{7}i}{8}
Multiply 2 times 4.
x=\frac{-2+2\sqrt{7}i}{8}
Now solve the equation x=\frac{-2±2\sqrt{7}i}{8} when ± is plus. Add -2 to 2i\sqrt{7}.
x=\frac{-1+\sqrt{7}i}{4}
Divide -2+2i\sqrt{7} by 8.
x=\frac{-2\sqrt{7}i-2}{8}
Now solve the equation x=\frac{-2±2\sqrt{7}i}{8} when ± is minus. Subtract 2i\sqrt{7} from -2.
x=\frac{-\sqrt{7}i-1}{4}
Divide -2-2i\sqrt{7} by 8.
x=\frac{-1+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i-1}{4}
The equation is now solved.
4x^{2}+4x+1=2x-1^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=2x-1
Calculate 1 to the power of 2 and get 1.
4x^{2}+4x+1-2x=-1
Subtract 2x from both sides.
4x^{2}+2x+1=-1
Combine 4x and -2x to get 2x.
4x^{2}+2x=-1-1
Subtract 1 from both sides.
4x^{2}+2x=-2
Subtract 1 from -1 to get -2.
\frac{4x^{2}+2x}{4}=-\frac{2}{4}
Divide both sides by 4.
x^{2}+\frac{2}{4}x=-\frac{2}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{1}{2}x=-\frac{2}{4}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{2}x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{1}{2}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{7}{16}
Add -\frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=-\frac{7}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{7}i}{4} x+\frac{1}{4}=-\frac{\sqrt{7}i}{4}
Simplify.
x=\frac{-1+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i-1}{4}
Subtract \frac{1}{4} from both sides of the equation.