Solve for x
x=\frac{1}{5}=0.2
x=-\frac{3}{5}=-0.6
Graph
Share
Copied to clipboard
625x^{2}+250x+25=100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25x+5\right)^{2}.
625x^{2}+250x+25-100=0
Subtract 100 from both sides.
625x^{2}+250x-75=0
Subtract 100 from 25 to get -75.
25x^{2}+10x-3=0
Divide both sides by 25.
a+b=10 ab=25\left(-3\right)=-75
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 25x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
-1,75 -3,25 -5,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -75.
-1+75=74 -3+25=22 -5+15=10
Calculate the sum for each pair.
a=-5 b=15
The solution is the pair that gives sum 10.
\left(25x^{2}-5x\right)+\left(15x-3\right)
Rewrite 25x^{2}+10x-3 as \left(25x^{2}-5x\right)+\left(15x-3\right).
5x\left(5x-1\right)+3\left(5x-1\right)
Factor out 5x in the first and 3 in the second group.
\left(5x-1\right)\left(5x+3\right)
Factor out common term 5x-1 by using distributive property.
x=\frac{1}{5} x=-\frac{3}{5}
To find equation solutions, solve 5x-1=0 and 5x+3=0.
625x^{2}+250x+25=100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25x+5\right)^{2}.
625x^{2}+250x+25-100=0
Subtract 100 from both sides.
625x^{2}+250x-75=0
Subtract 100 from 25 to get -75.
x=\frac{-250±\sqrt{250^{2}-4\times 625\left(-75\right)}}{2\times 625}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 625 for a, 250 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-250±\sqrt{62500-4\times 625\left(-75\right)}}{2\times 625}
Square 250.
x=\frac{-250±\sqrt{62500-2500\left(-75\right)}}{2\times 625}
Multiply -4 times 625.
x=\frac{-250±\sqrt{62500+187500}}{2\times 625}
Multiply -2500 times -75.
x=\frac{-250±\sqrt{250000}}{2\times 625}
Add 62500 to 187500.
x=\frac{-250±500}{2\times 625}
Take the square root of 250000.
x=\frac{-250±500}{1250}
Multiply 2 times 625.
x=\frac{250}{1250}
Now solve the equation x=\frac{-250±500}{1250} when ± is plus. Add -250 to 500.
x=\frac{1}{5}
Reduce the fraction \frac{250}{1250} to lowest terms by extracting and canceling out 250.
x=-\frac{750}{1250}
Now solve the equation x=\frac{-250±500}{1250} when ± is minus. Subtract 500 from -250.
x=-\frac{3}{5}
Reduce the fraction \frac{-750}{1250} to lowest terms by extracting and canceling out 250.
x=\frac{1}{5} x=-\frac{3}{5}
The equation is now solved.
625x^{2}+250x+25=100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25x+5\right)^{2}.
625x^{2}+250x=100-25
Subtract 25 from both sides.
625x^{2}+250x=75
Subtract 25 from 100 to get 75.
\frac{625x^{2}+250x}{625}=\frac{75}{625}
Divide both sides by 625.
x^{2}+\frac{250}{625}x=\frac{75}{625}
Dividing by 625 undoes the multiplication by 625.
x^{2}+\frac{2}{5}x=\frac{75}{625}
Reduce the fraction \frac{250}{625} to lowest terms by extracting and canceling out 125.
x^{2}+\frac{2}{5}x=\frac{3}{25}
Reduce the fraction \frac{75}{625} to lowest terms by extracting and canceling out 25.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{3}{25}+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{3+1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{4}{25}
Add \frac{3}{25} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{5}\right)^{2}=\frac{4}{25}
Factor x^{2}+\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
Take the square root of both sides of the equation.
x+\frac{1}{5}=\frac{2}{5} x+\frac{1}{5}=-\frac{2}{5}
Simplify.
x=\frac{1}{5} x=-\frac{3}{5}
Subtract \frac{1}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}