Solve for x
x=\frac{29\sqrt{193}}{38600}\approx 0.010437328
x=-\frac{29\sqrt{193}}{38600}\approx -0.010437328
Graph
Share
Copied to clipboard
2560^{2}x^{2}+\left(1080x\right)^{2}=29^{2}
Expand \left(2560x\right)^{2}.
6553600x^{2}+\left(1080x\right)^{2}=29^{2}
Calculate 2560 to the power of 2 and get 6553600.
6553600x^{2}+1080^{2}x^{2}=29^{2}
Expand \left(1080x\right)^{2}.
6553600x^{2}+1166400x^{2}=29^{2}
Calculate 1080 to the power of 2 and get 1166400.
7720000x^{2}=29^{2}
Combine 6553600x^{2} and 1166400x^{2} to get 7720000x^{2}.
7720000x^{2}=841
Calculate 29 to the power of 2 and get 841.
x^{2}=\frac{841}{7720000}
Divide both sides by 7720000.
x=\frac{29\sqrt{193}}{38600} x=-\frac{29\sqrt{193}}{38600}
Take the square root of both sides of the equation.
2560^{2}x^{2}+\left(1080x\right)^{2}=29^{2}
Expand \left(2560x\right)^{2}.
6553600x^{2}+\left(1080x\right)^{2}=29^{2}
Calculate 2560 to the power of 2 and get 6553600.
6553600x^{2}+1080^{2}x^{2}=29^{2}
Expand \left(1080x\right)^{2}.
6553600x^{2}+1166400x^{2}=29^{2}
Calculate 1080 to the power of 2 and get 1166400.
7720000x^{2}=29^{2}
Combine 6553600x^{2} and 1166400x^{2} to get 7720000x^{2}.
7720000x^{2}=841
Calculate 29 to the power of 2 and get 841.
7720000x^{2}-841=0
Subtract 841 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 7720000\left(-841\right)}}{2\times 7720000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7720000 for a, 0 for b, and -841 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7720000\left(-841\right)}}{2\times 7720000}
Square 0.
x=\frac{0±\sqrt{-30880000\left(-841\right)}}{2\times 7720000}
Multiply -4 times 7720000.
x=\frac{0±\sqrt{25970080000}}{2\times 7720000}
Multiply -30880000 times -841.
x=\frac{0±11600\sqrt{193}}{2\times 7720000}
Take the square root of 25970080000.
x=\frac{0±11600\sqrt{193}}{15440000}
Multiply 2 times 7720000.
x=\frac{29\sqrt{193}}{38600}
Now solve the equation x=\frac{0±11600\sqrt{193}}{15440000} when ± is plus.
x=-\frac{29\sqrt{193}}{38600}
Now solve the equation x=\frac{0±11600\sqrt{193}}{15440000} when ± is minus.
x=\frac{29\sqrt{193}}{38600} x=-\frac{29\sqrt{193}}{38600}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}