{ \left(2020x+2019 \right) }^{ 2 } + { \left(2020x+2020 \right) }^{ 2 } + { \left(2020x+2021 \right) }^{ 2 } \times (2020x
Evaluate
8242408000x^{3}+16501137600x^{2}+8266888380x+8156761
Expand
8242408000x^{3}+16501137600x^{2}+8266888380x+8156761
Graph
Share
Copied to clipboard
4080400x^{2}+8156760x+4076361+\left(2020x+2020\right)^{2}+\left(2020x+2021\right)^{2}\times 2020x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2020x+2019\right)^{2}.
4080400x^{2}+8156760x+4076361+4080400x^{2}+8160800x+4080400+\left(2020x+2021\right)^{2}\times 2020x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2020x+2020\right)^{2}.
8160800x^{2}+8156760x+4076361+8160800x+4080400+\left(2020x+2021\right)^{2}\times 2020x
Combine 4080400x^{2} and 4080400x^{2} to get 8160800x^{2}.
8160800x^{2}+16317560x+4076361+4080400+\left(2020x+2021\right)^{2}\times 2020x
Combine 8156760x and 8160800x to get 16317560x.
8160800x^{2}+16317560x+8156761+\left(2020x+2021\right)^{2}\times 2020x
Add 4076361 and 4080400 to get 8156761.
8160800x^{2}+16317560x+8156761+\left(4080400x^{2}+8164840x+4084441\right)\times 2020x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2020x+2021\right)^{2}.
8160800x^{2}+16317560x+8156761+\left(8242408000x^{2}+16492976800x+8250570820\right)x
Use the distributive property to multiply 4080400x^{2}+8164840x+4084441 by 2020.
8160800x^{2}+16317560x+8156761+8242408000x^{3}+16492976800x^{2}+8250570820x
Use the distributive property to multiply 8242408000x^{2}+16492976800x+8250570820 by x.
16501137600x^{2}+16317560x+8156761+8242408000x^{3}+8250570820x
Combine 8160800x^{2} and 16492976800x^{2} to get 16501137600x^{2}.
16501137600x^{2}+8266888380x+8156761+8242408000x^{3}
Combine 16317560x and 8250570820x to get 8266888380x.
4080400x^{2}+8156760x+4076361+\left(2020x+2020\right)^{2}+\left(2020x+2021\right)^{2}\times 2020x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2020x+2019\right)^{2}.
4080400x^{2}+8156760x+4076361+4080400x^{2}+8160800x+4080400+\left(2020x+2021\right)^{2}\times 2020x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2020x+2020\right)^{2}.
8160800x^{2}+8156760x+4076361+8160800x+4080400+\left(2020x+2021\right)^{2}\times 2020x
Combine 4080400x^{2} and 4080400x^{2} to get 8160800x^{2}.
8160800x^{2}+16317560x+4076361+4080400+\left(2020x+2021\right)^{2}\times 2020x
Combine 8156760x and 8160800x to get 16317560x.
8160800x^{2}+16317560x+8156761+\left(2020x+2021\right)^{2}\times 2020x
Add 4076361 and 4080400 to get 8156761.
8160800x^{2}+16317560x+8156761+\left(4080400x^{2}+8164840x+4084441\right)\times 2020x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2020x+2021\right)^{2}.
8160800x^{2}+16317560x+8156761+\left(8242408000x^{2}+16492976800x+8250570820\right)x
Use the distributive property to multiply 4080400x^{2}+8164840x+4084441 by 2020.
8160800x^{2}+16317560x+8156761+8242408000x^{3}+16492976800x^{2}+8250570820x
Use the distributive property to multiply 8242408000x^{2}+16492976800x+8250570820 by x.
16501137600x^{2}+16317560x+8156761+8242408000x^{3}+8250570820x
Combine 8160800x^{2} and 16492976800x^{2} to get 16501137600x^{2}.
16501137600x^{2}+8266888380x+8156761+8242408000x^{3}
Combine 16317560x and 8250570820x to get 8266888380x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}