Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{3}\right)^{2}-12\sqrt{3}+9-\frac{13}{4+\sqrt{3}}-\left(\sqrt{4}-3\right)^{0}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-3\right)^{2}.
4\times 3-12\sqrt{3}+9-\frac{13}{4+\sqrt{3}}-\left(\sqrt{4}-3\right)^{0}
The square of \sqrt{3} is 3.
12-12\sqrt{3}+9-\frac{13}{4+\sqrt{3}}-\left(\sqrt{4}-3\right)^{0}
Multiply 4 and 3 to get 12.
21-12\sqrt{3}-\frac{13}{4+\sqrt{3}}-\left(\sqrt{4}-3\right)^{0}
Add 12 and 9 to get 21.
21-12\sqrt{3}-\frac{13\left(4-\sqrt{3}\right)}{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)}-\left(\sqrt{4}-3\right)^{0}
Rationalize the denominator of \frac{13}{4+\sqrt{3}} by multiplying numerator and denominator by 4-\sqrt{3}.
21-12\sqrt{3}-\frac{13\left(4-\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}-\left(\sqrt{4}-3\right)^{0}
Consider \left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
21-12\sqrt{3}-\frac{13\left(4-\sqrt{3}\right)}{16-3}-\left(\sqrt{4}-3\right)^{0}
Square 4. Square \sqrt{3}.
21-12\sqrt{3}-\frac{13\left(4-\sqrt{3}\right)}{13}-\left(\sqrt{4}-3\right)^{0}
Subtract 3 from 16 to get 13.
21-12\sqrt{3}-\left(4-\sqrt{3}\right)-\left(\sqrt{4}-3\right)^{0}
Cancel out 13 and 13.
21-12\sqrt{3}-4+\sqrt{3}-\left(\sqrt{4}-3\right)^{0}
To find the opposite of 4-\sqrt{3}, find the opposite of each term.
17-12\sqrt{3}+\sqrt{3}-\left(\sqrt{4}-3\right)^{0}
Subtract 4 from 21 to get 17.
17-11\sqrt{3}-\left(\sqrt{4}-3\right)^{0}
Combine -12\sqrt{3} and \sqrt{3} to get -11\sqrt{3}.
17-11\sqrt{3}-\left(2-3\right)^{0}
Calculate the square root of 4 and get 2.
17-11\sqrt{3}-\left(-1\right)^{0}
Subtract 3 from 2 to get -1.
17-11\sqrt{3}-1
Calculate -1 to the power of 0 and get 1.
16-11\sqrt{3}
Subtract 1 from 17 to get 16.