Solve for x (complex solution)
x=\sqrt{33}-3\approx 2.744562647
x=-\left(\sqrt{33}+3\right)\approx -8.744562647
Solve for x
x=\sqrt{33}-3\approx 2.744562647
x=-\sqrt{33}-3\approx -8.744562647
Graph
Share
Copied to clipboard
2^{2}\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
Expand \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
Calculate 2 to the power of 2 and get 4.
4\times 3=\frac{1}{2}x\left(6+x\right)
The square of \sqrt{3} is 3.
12=\frac{1}{2}x\left(6+x\right)
Multiply 4 and 3 to get 12.
12=3x+\frac{1}{2}x^{2}
Use the distributive property to multiply \frac{1}{2}x by 6+x.
3x+\frac{1}{2}x^{2}=12
Swap sides so that all variable terms are on the left hand side.
3x+\frac{1}{2}x^{2}-12=0
Subtract 12 from both sides.
\frac{1}{2}x^{2}+3x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 3 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
Square 3.
x=\frac{-3±\sqrt{9-2\left(-12\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-3±\sqrt{9+24}}{2\times \frac{1}{2}}
Multiply -2 times -12.
x=\frac{-3±\sqrt{33}}{2\times \frac{1}{2}}
Add 9 to 24.
x=\frac{-3±\sqrt{33}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{33}-3}{1}
Now solve the equation x=\frac{-3±\sqrt{33}}{1} when ± is plus. Add -3 to \sqrt{33}.
x=\sqrt{33}-3
Divide -3+\sqrt{33} by 1.
x=\frac{-\sqrt{33}-3}{1}
Now solve the equation x=\frac{-3±\sqrt{33}}{1} when ± is minus. Subtract \sqrt{33} from -3.
x=-\sqrt{33}-3
Divide -3-\sqrt{33} by 1.
x=\sqrt{33}-3 x=-\sqrt{33}-3
The equation is now solved.
2^{2}\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
Expand \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
Calculate 2 to the power of 2 and get 4.
4\times 3=\frac{1}{2}x\left(6+x\right)
The square of \sqrt{3} is 3.
12=\frac{1}{2}x\left(6+x\right)
Multiply 4 and 3 to get 12.
12=3x+\frac{1}{2}x^{2}
Use the distributive property to multiply \frac{1}{2}x by 6+x.
3x+\frac{1}{2}x^{2}=12
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}+3x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}+3x}{\frac{1}{2}}=\frac{12}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{3}{\frac{1}{2}}x=\frac{12}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+6x=\frac{12}{\frac{1}{2}}
Divide 3 by \frac{1}{2} by multiplying 3 by the reciprocal of \frac{1}{2}.
x^{2}+6x=24
Divide 12 by \frac{1}{2} by multiplying 12 by the reciprocal of \frac{1}{2}.
x^{2}+6x+3^{2}=24+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=24+9
Square 3.
x^{2}+6x+9=33
Add 24 to 9.
\left(x+3\right)^{2}=33
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{33}
Take the square root of both sides of the equation.
x+3=\sqrt{33} x+3=-\sqrt{33}
Simplify.
x=\sqrt{33}-3 x=-\sqrt{33}-3
Subtract 3 from both sides of the equation.
2^{2}\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
Expand \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
Calculate 2 to the power of 2 and get 4.
4\times 3=\frac{1}{2}x\left(6+x\right)
The square of \sqrt{3} is 3.
12=\frac{1}{2}x\left(6+x\right)
Multiply 4 and 3 to get 12.
12=3x+\frac{1}{2}x^{2}
Use the distributive property to multiply \frac{1}{2}x by 6+x.
3x+\frac{1}{2}x^{2}=12
Swap sides so that all variable terms are on the left hand side.
3x+\frac{1}{2}x^{2}-12=0
Subtract 12 from both sides.
\frac{1}{2}x^{2}+3x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 3 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times \frac{1}{2}\left(-12\right)}}{2\times \frac{1}{2}}
Square 3.
x=\frac{-3±\sqrt{9-2\left(-12\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-3±\sqrt{9+24}}{2\times \frac{1}{2}}
Multiply -2 times -12.
x=\frac{-3±\sqrt{33}}{2\times \frac{1}{2}}
Add 9 to 24.
x=\frac{-3±\sqrt{33}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{33}-3}{1}
Now solve the equation x=\frac{-3±\sqrt{33}}{1} when ± is plus. Add -3 to \sqrt{33}.
x=\sqrt{33}-3
Divide -3+\sqrt{33} by 1.
x=\frac{-\sqrt{33}-3}{1}
Now solve the equation x=\frac{-3±\sqrt{33}}{1} when ± is minus. Subtract \sqrt{33} from -3.
x=-\sqrt{33}-3
Divide -3-\sqrt{33} by 1.
x=\sqrt{33}-3 x=-\sqrt{33}-3
The equation is now solved.
2^{2}\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
Expand \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}=\frac{1}{2}x\left(6+x\right)
Calculate 2 to the power of 2 and get 4.
4\times 3=\frac{1}{2}x\left(6+x\right)
The square of \sqrt{3} is 3.
12=\frac{1}{2}x\left(6+x\right)
Multiply 4 and 3 to get 12.
12=3x+\frac{1}{2}x^{2}
Use the distributive property to multiply \frac{1}{2}x by 6+x.
3x+\frac{1}{2}x^{2}=12
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}+3x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}x^{2}+3x}{\frac{1}{2}}=\frac{12}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{3}{\frac{1}{2}}x=\frac{12}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+6x=\frac{12}{\frac{1}{2}}
Divide 3 by \frac{1}{2} by multiplying 3 by the reciprocal of \frac{1}{2}.
x^{2}+6x=24
Divide 12 by \frac{1}{2} by multiplying 12 by the reciprocal of \frac{1}{2}.
x^{2}+6x+3^{2}=24+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=24+9
Square 3.
x^{2}+6x+9=33
Add 24 to 9.
\left(x+3\right)^{2}=33
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{33}
Take the square root of both sides of the equation.
x+3=\sqrt{33} x+3=-\sqrt{33}
Simplify.
x=\sqrt{33}-3 x=-\sqrt{33}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}