Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\left(2\times \frac{\sqrt{3}}{\sqrt{8}}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{3}{8}} as the division of square roots \frac{\sqrt{3}}{\sqrt{8}}.
\left(2\times \frac{\sqrt{3}}{2\sqrt{2}}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(2\times \frac{\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(2\times \frac{\sqrt{3}\sqrt{2}}{2\times 2}\right)^{2}
The square of \sqrt{2} is 2.
\left(2\times \frac{\sqrt{6}}{2\times 2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(2\times \frac{\sqrt{6}}{4}\right)^{2}
Multiply 2 and 2 to get 4.
\left(\frac{\sqrt{6}}{2}\right)^{2}
Cancel out 4, the greatest common factor in 2 and 4.
\frac{\left(\sqrt{6}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{6}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{6}{2^{2}}
The square of \sqrt{6} is 6.
\frac{6}{4}
Calculate 2 to the power of 2 and get 4.
\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}