Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7988005999-11988003x+5997x^{2}-x^{3}+\left(x-1998\right)^{3}=1
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1999-x\right)^{3}.
7988005999-11988003x+5997x^{2}-x^{3}+x^{3}-5994x^{2}+11976012x-7976023992=1
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1998\right)^{3}.
7988005999-11988003x+5997x^{2}-5994x^{2}+11976012x-7976023992=1
Combine -x^{3} and x^{3} to get 0.
7988005999-11988003x+3x^{2}+11976012x-7976023992=1
Combine 5997x^{2} and -5994x^{2} to get 3x^{2}.
7988005999-11991x+3x^{2}-7976023992=1
Combine -11988003x and 11976012x to get -11991x.
11982007-11991x+3x^{2}=1
Subtract 7976023992 from 7988005999 to get 11982007.
11982007-11991x+3x^{2}-1=0
Subtract 1 from both sides.
11982006-11991x+3x^{2}=0
Subtract 1 from 11982007 to get 11982006.
3x^{2}-11991x+11982006=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11991\right)±\sqrt{\left(-11991\right)^{2}-4\times 3\times 11982006}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -11991 for b, and 11982006 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11991\right)±\sqrt{143784081-4\times 3\times 11982006}}{2\times 3}
Square -11991.
x=\frac{-\left(-11991\right)±\sqrt{143784081-12\times 11982006}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-11991\right)±\sqrt{143784081-143784072}}{2\times 3}
Multiply -12 times 11982006.
x=\frac{-\left(-11991\right)±\sqrt{9}}{2\times 3}
Add 143784081 to -143784072.
x=\frac{-\left(-11991\right)±3}{2\times 3}
Take the square root of 9.
x=\frac{11991±3}{2\times 3}
The opposite of -11991 is 11991.
x=\frac{11991±3}{6}
Multiply 2 times 3.
x=\frac{11994}{6}
Now solve the equation x=\frac{11991±3}{6} when ± is plus. Add 11991 to 3.
x=1999
Divide 11994 by 6.
x=\frac{11988}{6}
Now solve the equation x=\frac{11991±3}{6} when ± is minus. Subtract 3 from 11991.
x=1998
Divide 11988 by 6.
x=1999 x=1998
The equation is now solved.
7988005999-11988003x+5997x^{2}-x^{3}+\left(x-1998\right)^{3}=1
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1999-x\right)^{3}.
7988005999-11988003x+5997x^{2}-x^{3}+x^{3}-5994x^{2}+11976012x-7976023992=1
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1998\right)^{3}.
7988005999-11988003x+5997x^{2}-5994x^{2}+11976012x-7976023992=1
Combine -x^{3} and x^{3} to get 0.
7988005999-11988003x+3x^{2}+11976012x-7976023992=1
Combine 5997x^{2} and -5994x^{2} to get 3x^{2}.
7988005999-11991x+3x^{2}-7976023992=1
Combine -11988003x and 11976012x to get -11991x.
11982007-11991x+3x^{2}=1
Subtract 7976023992 from 7988005999 to get 11982007.
-11991x+3x^{2}=1-11982007
Subtract 11982007 from both sides.
-11991x+3x^{2}=-11982006
Subtract 11982007 from 1 to get -11982006.
3x^{2}-11991x=-11982006
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-11991x}{3}=-\frac{11982006}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{11991}{3}\right)x=-\frac{11982006}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-3997x=-\frac{11982006}{3}
Divide -11991 by 3.
x^{2}-3997x=-3994002
Divide -11982006 by 3.
x^{2}-3997x+\left(-\frac{3997}{2}\right)^{2}=-3994002+\left(-\frac{3997}{2}\right)^{2}
Divide -3997, the coefficient of the x term, by 2 to get -\frac{3997}{2}. Then add the square of -\frac{3997}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3997x+\frac{15976009}{4}=-3994002+\frac{15976009}{4}
Square -\frac{3997}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3997x+\frac{15976009}{4}=\frac{1}{4}
Add -3994002 to \frac{15976009}{4}.
\left(x-\frac{3997}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-3997x+\frac{15976009}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3997}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{3997}{2}=\frac{1}{2} x-\frac{3997}{2}=-\frac{1}{2}
Simplify.
x=1999 x=1998
Add \frac{3997}{2} to both sides of the equation.