Solve for m
m=\frac{1}{24025}\approx 0.000041623
m=0
Share
Copied to clipboard
155^{2}m^{2}=m
Expand \left(155m\right)^{2}.
24025m^{2}=m
Calculate 155 to the power of 2 and get 24025.
24025m^{2}-m=0
Subtract m from both sides.
m\left(24025m-1\right)=0
Factor out m.
m=0 m=\frac{1}{24025}
To find equation solutions, solve m=0 and 24025m-1=0.
155^{2}m^{2}=m
Expand \left(155m\right)^{2}.
24025m^{2}=m
Calculate 155 to the power of 2 and get 24025.
24025m^{2}-m=0
Subtract m from both sides.
m=\frac{-\left(-1\right)±\sqrt{1}}{2\times 24025}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24025 for a, -1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-1\right)±1}{2\times 24025}
Take the square root of 1.
m=\frac{1±1}{2\times 24025}
The opposite of -1 is 1.
m=\frac{1±1}{48050}
Multiply 2 times 24025.
m=\frac{2}{48050}
Now solve the equation m=\frac{1±1}{48050} when ± is plus. Add 1 to 1.
m=\frac{1}{24025}
Reduce the fraction \frac{2}{48050} to lowest terms by extracting and canceling out 2.
m=\frac{0}{48050}
Now solve the equation m=\frac{1±1}{48050} when ± is minus. Subtract 1 from 1.
m=0
Divide 0 by 48050.
m=\frac{1}{24025} m=0
The equation is now solved.
155^{2}m^{2}=m
Expand \left(155m\right)^{2}.
24025m^{2}=m
Calculate 155 to the power of 2 and get 24025.
24025m^{2}-m=0
Subtract m from both sides.
\frac{24025m^{2}-m}{24025}=\frac{0}{24025}
Divide both sides by 24025.
m^{2}-\frac{1}{24025}m=\frac{0}{24025}
Dividing by 24025 undoes the multiplication by 24025.
m^{2}-\frac{1}{24025}m=0
Divide 0 by 24025.
m^{2}-\frac{1}{24025}m+\left(-\frac{1}{48050}\right)^{2}=\left(-\frac{1}{48050}\right)^{2}
Divide -\frac{1}{24025}, the coefficient of the x term, by 2 to get -\frac{1}{48050}. Then add the square of -\frac{1}{48050} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{1}{24025}m+\frac{1}{2308802500}=\frac{1}{2308802500}
Square -\frac{1}{48050} by squaring both the numerator and the denominator of the fraction.
\left(m-\frac{1}{48050}\right)^{2}=\frac{1}{2308802500}
Factor m^{2}-\frac{1}{24025}m+\frac{1}{2308802500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{48050}\right)^{2}}=\sqrt{\frac{1}{2308802500}}
Take the square root of both sides of the equation.
m-\frac{1}{48050}=\frac{1}{48050} m-\frac{1}{48050}=-\frac{1}{48050}
Simplify.
m=\frac{1}{24025} m=0
Add \frac{1}{48050} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}