Solve for x
x=\frac{\sqrt{690}}{25}+1.58\approx 2.630714043
x=-\frac{\sqrt{690}}{25}+1.58\approx 0.529285957
Graph
Share
Copied to clipboard
1.3924-2.36x+x^{2}=0.8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1.18-x\right)^{2}.
1.3924-2.36x+x^{2}-0.8x=0
Subtract 0.8x from both sides.
1.3924-3.16x+x^{2}=0
Combine -2.36x and -0.8x to get -3.16x.
x^{2}-3.16x+1.3924=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3.16\right)±\sqrt{\left(-3.16\right)^{2}-4\times 1.3924}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3.16 for b, and 1.3924 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3.16\right)±\sqrt{9.9856-4\times 1.3924}}{2}
Square -3.16 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-3.16\right)±\sqrt{\frac{6241-3481}{625}}}{2}
Multiply -4 times 1.3924.
x=\frac{-\left(-3.16\right)±\sqrt{4.416}}{2}
Add 9.9856 to -5.5696 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-3.16\right)±\frac{2\sqrt{690}}{25}}{2}
Take the square root of 4.416.
x=\frac{3.16±\frac{2\sqrt{690}}{25}}{2}
The opposite of -3.16 is 3.16.
x=\frac{2\sqrt{690}+79}{2\times 25}
Now solve the equation x=\frac{3.16±\frac{2\sqrt{690}}{25}}{2} when ± is plus. Add 3.16 to \frac{2\sqrt{690}}{25}.
x=\frac{\sqrt{690}}{25}+\frac{79}{50}
Divide \frac{79+2\sqrt{690}}{25} by 2.
x=\frac{79-2\sqrt{690}}{2\times 25}
Now solve the equation x=\frac{3.16±\frac{2\sqrt{690}}{25}}{2} when ± is minus. Subtract \frac{2\sqrt{690}}{25} from 3.16.
x=-\frac{\sqrt{690}}{25}+\frac{79}{50}
Divide \frac{79-2\sqrt{690}}{25} by 2.
x=\frac{\sqrt{690}}{25}+\frac{79}{50} x=-\frac{\sqrt{690}}{25}+\frac{79}{50}
The equation is now solved.
1.3924-2.36x+x^{2}=0.8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1.18-x\right)^{2}.
1.3924-2.36x+x^{2}-0.8x=0
Subtract 0.8x from both sides.
1.3924-3.16x+x^{2}=0
Combine -2.36x and -0.8x to get -3.16x.
-3.16x+x^{2}=-1.3924
Subtract 1.3924 from both sides. Anything subtracted from zero gives its negation.
x^{2}-3.16x=-1.3924
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-3.16x+\left(-1.58\right)^{2}=-1.3924+\left(-1.58\right)^{2}
Divide -3.16, the coefficient of the x term, by 2 to get -1.58. Then add the square of -1.58 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3.16x+2.4964=\frac{-3481+6241}{2500}
Square -1.58 by squaring both the numerator and the denominator of the fraction.
x^{2}-3.16x+2.4964=1.104
Add -1.3924 to 2.4964 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-1.58\right)^{2}=1.104
Factor x^{2}-3.16x+2.4964. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1.58\right)^{2}}=\sqrt{1.104}
Take the square root of both sides of the equation.
x-1.58=\frac{\sqrt{690}}{25} x-1.58=-\frac{\sqrt{690}}{25}
Simplify.
x=\frac{\sqrt{690}}{25}+\frac{79}{50} x=-\frac{\sqrt{690}}{25}+\frac{79}{50}
Add 1.58 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}