Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

1-3x+3x^{2}-x^{3}-\left(-x-1\right)^{3}-6\left(x^{2}-2x+2\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1-x\right)^{3}.
1-3x+3x^{2}-x^{3}-\left(\left(-x\right)^{3}-3\left(-x\right)^{2}+3\left(-x\right)-1\right)-6\left(x^{2}-2x+2\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(-x-1\right)^{3}.
1-3x+3x^{2}-x^{3}-\left(\left(-x\right)^{3}-3x^{2}+3\left(-x\right)-1\right)-6\left(x^{2}-2x+2\right)
Calculate -x to the power of 2 and get x^{2}.
1-3x+3x^{2}-x^{3}-\left(-x\right)^{3}+3x^{2}-3\left(-x\right)+1-6\left(x^{2}-2x+2\right)
To find the opposite of \left(-x\right)^{3}-3x^{2}+3\left(-x\right)-1, find the opposite of each term.
1-3x+6x^{2}-x^{3}-\left(-x\right)^{3}-3\left(-x\right)+1-6\left(x^{2}-2x+2\right)
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
1-3x+6x^{2}-x^{3}-\left(-x\right)^{3}+3x+1-6\left(x^{2}-2x+2\right)
Multiply -3 and -1 to get 3.
1+6x^{2}-x^{3}-\left(-x\right)^{3}+1-6\left(x^{2}-2x+2\right)
Combine -3x and 3x to get 0.
2+6x^{2}-x^{3}-\left(-x\right)^{3}-6\left(x^{2}-2x+2\right)
Add 1 and 1 to get 2.
2+6x^{2}-x^{3}-\left(-x\right)^{3}-6x^{2}+12x-12
Use the distributive property to multiply -6 by x^{2}-2x+2.
2-x^{3}-\left(-x\right)^{3}+12x-12
Combine 6x^{2} and -6x^{2} to get 0.
-10-x^{3}-\left(-x\right)^{3}+12x
Subtract 12 from 2 to get -10.
-10-x^{3}-\left(-1\right)^{3}x^{3}+12x
Expand \left(-x\right)^{3}.
-10-x^{3}-\left(-x^{3}\right)+12x
Calculate -1 to the power of 3 and get -1.
-10-x^{3}+x^{3}+12x
Multiply -1 and -1 to get 1.
-10+12x
Combine -x^{3} and x^{3} to get 0.
1-3x+3x^{2}-x^{3}-\left(-x-1\right)^{3}-6\left(x^{2}-2x+2\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1-x\right)^{3}.
1-3x+3x^{2}-x^{3}-\left(\left(-x\right)^{3}-3\left(-x\right)^{2}+3\left(-x\right)-1\right)-6\left(x^{2}-2x+2\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(-x-1\right)^{3}.
1-3x+3x^{2}-x^{3}-\left(\left(-x\right)^{3}-3x^{2}+3\left(-x\right)-1\right)-6\left(x^{2}-2x+2\right)
Calculate -x to the power of 2 and get x^{2}.
1-3x+3x^{2}-x^{3}-\left(-x\right)^{3}+3x^{2}-3\left(-x\right)+1-6\left(x^{2}-2x+2\right)
To find the opposite of \left(-x\right)^{3}-3x^{2}+3\left(-x\right)-1, find the opposite of each term.
1-3x+6x^{2}-x^{3}-\left(-x\right)^{3}-3\left(-x\right)+1-6\left(x^{2}-2x+2\right)
Combine 3x^{2} and 3x^{2} to get 6x^{2}.
1-3x+6x^{2}-x^{3}-\left(-x\right)^{3}+3x+1-6\left(x^{2}-2x+2\right)
Multiply -3 and -1 to get 3.
1+6x^{2}-x^{3}-\left(-x\right)^{3}+1-6\left(x^{2}-2x+2\right)
Combine -3x and 3x to get 0.
2+6x^{2}-x^{3}-\left(-x\right)^{3}-6\left(x^{2}-2x+2\right)
Add 1 and 1 to get 2.
2+6x^{2}-x^{3}-\left(-x\right)^{3}-6x^{2}+12x-12
Use the distributive property to multiply -6 by x^{2}-2x+2.
2-x^{3}-\left(-x\right)^{3}+12x-12
Combine 6x^{2} and -6x^{2} to get 0.
-10-x^{3}-\left(-x\right)^{3}+12x
Subtract 12 from 2 to get -10.
-10-x^{3}-\left(-1\right)^{3}x^{3}+12x
Expand \left(-x\right)^{3}.
-10-x^{3}-\left(-x^{3}\right)+12x
Calculate -1 to the power of 3 and get -1.
-10-x^{3}+x^{3}+12x
Multiply -1 and -1 to get 1.
-10+12x
Combine -x^{3} and x^{3} to get 0.