Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-14x+240=0
Calculate -x to the power of 2 and get x^{2}.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 240}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and 240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 240}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-960}}{2}
Multiply -4 times 240.
x=\frac{-\left(-14\right)±\sqrt{-764}}{2}
Add 196 to -960.
x=\frac{-\left(-14\right)±2\sqrt{191}i}{2}
Take the square root of -764.
x=\frac{14±2\sqrt{191}i}{2}
The opposite of -14 is 14.
x=\frac{14+2\sqrt{191}i}{2}
Now solve the equation x=\frac{14±2\sqrt{191}i}{2} when ± is plus. Add 14 to 2i\sqrt{191}.
x=7+\sqrt{191}i
Divide 14+2i\sqrt{191} by 2.
x=\frac{-2\sqrt{191}i+14}{2}
Now solve the equation x=\frac{14±2\sqrt{191}i}{2} when ± is minus. Subtract 2i\sqrt{191} from 14.
x=-\sqrt{191}i+7
Divide 14-2i\sqrt{191} by 2.
x=7+\sqrt{191}i x=-\sqrt{191}i+7
The equation is now solved.
x^{2}-14x+240=0
Calculate -x to the power of 2 and get x^{2}.
x^{2}-14x=-240
Subtract 240 from both sides. Anything subtracted from zero gives its negation.
x^{2}-14x+\left(-7\right)^{2}=-240+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-240+49
Square -7.
x^{2}-14x+49=-191
Add -240 to 49.
\left(x-7\right)^{2}=-191
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{-191}
Take the square root of both sides of the equation.
x-7=\sqrt{191}i x-7=-\sqrt{191}i
Simplify.
x=7+\sqrt{191}i x=-\sqrt{191}i+7
Add 7 to both sides of the equation.