Solve for x (complex solution)
x=\frac{-1+\sqrt{12799}i}{200}\approx -0.005+0.565663327i
x=\frac{-\sqrt{12799}i-1}{200}\approx -0.005-0.565663327i
Graph
Share
Copied to clipboard
\left(-50\right)^{2}x^{2}+25x+500=-300
Expand \left(-50x\right)^{2}.
2500x^{2}+25x+500=-300
Calculate -50 to the power of 2 and get 2500.
2500x^{2}+25x+500+300=0
Add 300 to both sides.
2500x^{2}+25x+800=0
Add 500 and 300 to get 800.
x=\frac{-25±\sqrt{25^{2}-4\times 2500\times 800}}{2\times 2500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2500 for a, 25 for b, and 800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 2500\times 800}}{2\times 2500}
Square 25.
x=\frac{-25±\sqrt{625-10000\times 800}}{2\times 2500}
Multiply -4 times 2500.
x=\frac{-25±\sqrt{625-8000000}}{2\times 2500}
Multiply -10000 times 800.
x=\frac{-25±\sqrt{-7999375}}{2\times 2500}
Add 625 to -8000000.
x=\frac{-25±25\sqrt{12799}i}{2\times 2500}
Take the square root of -7999375.
x=\frac{-25±25\sqrt{12799}i}{5000}
Multiply 2 times 2500.
x=\frac{-25+25\sqrt{12799}i}{5000}
Now solve the equation x=\frac{-25±25\sqrt{12799}i}{5000} when ± is plus. Add -25 to 25i\sqrt{12799}.
x=\frac{-1+\sqrt{12799}i}{200}
Divide -25+25i\sqrt{12799} by 5000.
x=\frac{-25\sqrt{12799}i-25}{5000}
Now solve the equation x=\frac{-25±25\sqrt{12799}i}{5000} when ± is minus. Subtract 25i\sqrt{12799} from -25.
x=\frac{-\sqrt{12799}i-1}{200}
Divide -25-25i\sqrt{12799} by 5000.
x=\frac{-1+\sqrt{12799}i}{200} x=\frac{-\sqrt{12799}i-1}{200}
The equation is now solved.
\left(-50\right)^{2}x^{2}+25x+500=-300
Expand \left(-50x\right)^{2}.
2500x^{2}+25x+500=-300
Calculate -50 to the power of 2 and get 2500.
2500x^{2}+25x=-300-500
Subtract 500 from both sides.
2500x^{2}+25x=-800
Subtract 500 from -300 to get -800.
\frac{2500x^{2}+25x}{2500}=-\frac{800}{2500}
Divide both sides by 2500.
x^{2}+\frac{25}{2500}x=-\frac{800}{2500}
Dividing by 2500 undoes the multiplication by 2500.
x^{2}+\frac{1}{100}x=-\frac{800}{2500}
Reduce the fraction \frac{25}{2500} to lowest terms by extracting and canceling out 25.
x^{2}+\frac{1}{100}x=-\frac{8}{25}
Reduce the fraction \frac{-800}{2500} to lowest terms by extracting and canceling out 100.
x^{2}+\frac{1}{100}x+\left(\frac{1}{200}\right)^{2}=-\frac{8}{25}+\left(\frac{1}{200}\right)^{2}
Divide \frac{1}{100}, the coefficient of the x term, by 2 to get \frac{1}{200}. Then add the square of \frac{1}{200} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{100}x+\frac{1}{40000}=-\frac{8}{25}+\frac{1}{40000}
Square \frac{1}{200} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{100}x+\frac{1}{40000}=-\frac{12799}{40000}
Add -\frac{8}{25} to \frac{1}{40000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{200}\right)^{2}=-\frac{12799}{40000}
Factor x^{2}+\frac{1}{100}x+\frac{1}{40000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{200}\right)^{2}}=\sqrt{-\frac{12799}{40000}}
Take the square root of both sides of the equation.
x+\frac{1}{200}=\frac{\sqrt{12799}i}{200} x+\frac{1}{200}=-\frac{\sqrt{12799}i}{200}
Simplify.
x=\frac{-1+\sqrt{12799}i}{200} x=\frac{-\sqrt{12799}i-1}{200}
Subtract \frac{1}{200} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}