Solve for x
x=\frac{-\sqrt{2}-3}{4}\approx -1.103553391
x=\frac{\sqrt{2}-3}{4}\approx -0.396446609
Graph
Share
Copied to clipboard
-4x-3=\sqrt{2} -4x-3=-\sqrt{2}
Take the square root of both sides of the equation.
-4x-3-\left(-3\right)=\sqrt{2}-\left(-3\right) -4x-3-\left(-3\right)=-\sqrt{2}-\left(-3\right)
Add 3 to both sides of the equation.
-4x=\sqrt{2}-\left(-3\right) -4x=-\sqrt{2}-\left(-3\right)
Subtracting -3 from itself leaves 0.
-4x=\sqrt{2}+3
Subtract -3 from \sqrt{2}.
-4x=3-\sqrt{2}
Subtract -3 from -\sqrt{2}.
\frac{-4x}{-4}=\frac{\sqrt{2}+3}{-4} \frac{-4x}{-4}=\frac{3-\sqrt{2}}{-4}
Divide both sides by -4.
x=\frac{\sqrt{2}+3}{-4} x=\frac{3-\sqrt{2}}{-4}
Dividing by -4 undoes the multiplication by -4.
x=\frac{-\sqrt{2}-3}{4}
Divide \sqrt{2}+3 by -4.
x=\frac{\sqrt{2}-3}{4}
Divide -\sqrt{2}+3 by -4.
x=\frac{-\sqrt{2}-3}{4} x=\frac{\sqrt{2}-3}{4}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}