Evaluate
\frac{1331}{5625}\approx 0.236622222
Factor
\frac{11 ^ {3}}{3 ^ {2} \cdot 5 ^ {4}} = 0.23662222222222223
Share
Copied to clipboard
\frac{16}{9}\times 0.3^{4}-\left(-\frac{1}{2}\right)^{3}\times \left(\frac{4}{3}\right)^{2}
Calculate -\frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{16}{9}\times 0.0081-\left(-\frac{1}{2}\right)^{3}\times \left(\frac{4}{3}\right)^{2}
Calculate 0.3 to the power of 4 and get 0.0081.
\frac{16}{9}\times \frac{81}{10000}-\left(-\frac{1}{2}\right)^{3}\times \left(\frac{4}{3}\right)^{2}
Convert decimal number 0.0081 to fraction \frac{81}{10000}.
\frac{16\times 81}{9\times 10000}-\left(-\frac{1}{2}\right)^{3}\times \left(\frac{4}{3}\right)^{2}
Multiply \frac{16}{9} times \frac{81}{10000} by multiplying numerator times numerator and denominator times denominator.
\frac{1296}{90000}-\left(-\frac{1}{2}\right)^{3}\times \left(\frac{4}{3}\right)^{2}
Do the multiplications in the fraction \frac{16\times 81}{9\times 10000}.
\frac{9}{625}-\left(-\frac{1}{2}\right)^{3}\times \left(\frac{4}{3}\right)^{2}
Reduce the fraction \frac{1296}{90000} to lowest terms by extracting and canceling out 144.
\frac{9}{625}-\left(-\frac{1}{8}\times \left(\frac{4}{3}\right)^{2}\right)
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\frac{9}{625}-\left(-\frac{1}{8}\times \frac{16}{9}\right)
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{9}{625}-\frac{-16}{8\times 9}
Multiply -\frac{1}{8} times \frac{16}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{625}-\frac{-16}{72}
Do the multiplications in the fraction \frac{-16}{8\times 9}.
\frac{9}{625}-\left(-\frac{2}{9}\right)
Reduce the fraction \frac{-16}{72} to lowest terms by extracting and canceling out 8.
\frac{9}{625}+\frac{2}{9}
The opposite of -\frac{2}{9} is \frac{2}{9}.
\frac{81}{5625}+\frac{1250}{5625}
Least common multiple of 625 and 9 is 5625. Convert \frac{9}{625} and \frac{2}{9} to fractions with denominator 5625.
\frac{81+1250}{5625}
Since \frac{81}{5625} and \frac{1250}{5625} have the same denominator, add them by adding their numerators.
\frac{1331}{5625}
Add 81 and 1250 to get 1331.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}