Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Calculate \sqrt{6}-\sqrt{3} to the power of 1 and get \sqrt{6}-\sqrt{3}.
\sqrt{6}\sqrt{2}+\sqrt{6}\sqrt{3}-\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply \sqrt{6}-\sqrt{3} by \sqrt{2}+\sqrt{3}.
\sqrt{2}\sqrt{3}\sqrt{2}+\sqrt{6}\sqrt{3}-\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{3}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
2\sqrt{3}+3\sqrt{2}-\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{3}+3\sqrt{2}-\sqrt{6}-\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
2\sqrt{3}+3\sqrt{2}-\sqrt{6}-3
The square of \sqrt{3} is 3.