Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4}{\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-2\right)^{2}.
\frac{3-4\sqrt{3}+4}{\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{7-4\sqrt{3}}{\sqrt{3}}
Add 3 and 4 to get 7.
\frac{\left(7-4\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{7-4\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(7-4\sqrt{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{7\sqrt{3}-4\left(\sqrt{3}\right)^{2}}{3}
Use the distributive property to multiply 7-4\sqrt{3} by \sqrt{3}.
\frac{7\sqrt{3}-4\times 3}{3}
The square of \sqrt{3} is 3.
\frac{7\sqrt{3}-12}{3}
Multiply -4 and 3 to get -12.