Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(5+2\sqrt{6}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{2}\right)^{2}.
\left(3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(5+2\sqrt{6}\right)
The square of \sqrt{3} is 3.
\left(3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)\left(5+2\sqrt{6}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(3-2\sqrt{6}+2\right)\left(5+2\sqrt{6}\right)
The square of \sqrt{2} is 2.
\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)
Add 3 and 2 to get 5.
25-\left(2\sqrt{6}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
25-2^{2}\left(\sqrt{6}\right)^{2}
Expand \left(2\sqrt{6}\right)^{2}.
25-4\left(\sqrt{6}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25-4\times 6
The square of \sqrt{6} is 6.
25-24
Multiply 4 and 6 to get 24.
1
Subtract 24 from 25 to get 1.