Evaluate
1
Factor
1
Share
Copied to clipboard
\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(5+2\sqrt{6}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{2}\right)^{2}.
\left(3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(5+2\sqrt{6}\right)
The square of \sqrt{3} is 3.
\left(3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)\left(5+2\sqrt{6}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\left(3-2\sqrt{6}+2\right)\left(5+2\sqrt{6}\right)
The square of \sqrt{2} is 2.
\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)
Add 3 and 2 to get 5.
25-\left(2\sqrt{6}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
25-2^{2}\left(\sqrt{6}\right)^{2}
Expand \left(2\sqrt{6}\right)^{2}.
25-4\left(\sqrt{6}\right)^{2}
Calculate 2 to the power of 2 and get 4.
25-4\times 6
The square of \sqrt{6} is 6.
25-24
Multiply 4 and 6 to get 24.
1
Subtract 24 from 25 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}