Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{2018+x}\right)^{2}+2\sqrt{2018+x}\sqrt{2017+x}+\left(\sqrt{2017+x}\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2018+x}+\sqrt{2017+x}\right)^{2}.
2018+x+2\sqrt{2018+x}\sqrt{2017+x}+\left(\sqrt{2017+x}\right)^{2}=4
Calculate \sqrt{2018+x} to the power of 2 and get 2018+x.
2018+x+2\sqrt{2018+x}\sqrt{2017+x}+2017+x=4
Calculate \sqrt{2017+x} to the power of 2 and get 2017+x.
4035+x+2\sqrt{2018+x}\sqrt{2017+x}+x=4
Add 2018 and 2017 to get 4035.
4035+2x+2\sqrt{2018+x}\sqrt{2017+x}=4
Combine x and x to get 2x.
2x+2\sqrt{2018+x}\sqrt{2017+x}=4-4035
Subtract 4035 from both sides.
2x+2\sqrt{2018+x}\sqrt{2017+x}=-4031
Subtract 4035 from 4 to get -4031.
2\sqrt{2018+x}\sqrt{2017+x}=-4031-2x
Subtract 2x from both sides of the equation.
\left(2\sqrt{2018+x}\sqrt{2017+x}\right)^{2}=\left(-2x-4031\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{2018+x}\right)^{2}\left(\sqrt{2017+x}\right)^{2}=\left(-2x-4031\right)^{2}
Expand \left(2\sqrt{2018+x}\sqrt{2017+x}\right)^{2}.
4\left(\sqrt{2018+x}\right)^{2}\left(\sqrt{2017+x}\right)^{2}=\left(-2x-4031\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(2018+x\right)\left(\sqrt{2017+x}\right)^{2}=\left(-2x-4031\right)^{2}
Calculate \sqrt{2018+x} to the power of 2 and get 2018+x.
4\left(2018+x\right)\left(2017+x\right)=\left(-2x-4031\right)^{2}
Calculate \sqrt{2017+x} to the power of 2 and get 2017+x.
\left(8072+4x\right)\left(2017+x\right)=\left(-2x-4031\right)^{2}
Use the distributive property to multiply 4 by 2018+x.
16281224+16140x+4x^{2}=\left(-2x-4031\right)^{2}
Use the distributive property to multiply 8072+4x by 2017+x and combine like terms.
16281224+16140x+4x^{2}=4x^{2}+16124x+16248961
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-4031\right)^{2}.
16281224+16140x+4x^{2}-4x^{2}=16124x+16248961
Subtract 4x^{2} from both sides.
16281224+16140x=16124x+16248961
Combine 4x^{2} and -4x^{2} to get 0.
16281224+16140x-16124x=16248961
Subtract 16124x from both sides.
16281224+16x=16248961
Combine 16140x and -16124x to get 16x.
16x=16248961-16281224
Subtract 16281224 from both sides.
16x=-32263
Subtract 16281224 from 16248961 to get -32263.
x=\frac{-32263}{16}
Divide both sides by 16.
x=-\frac{32263}{16}
Fraction \frac{-32263}{16} can be rewritten as -\frac{32263}{16} by extracting the negative sign.
\left(\sqrt{2018-\frac{32263}{16}}+\sqrt{2017-\frac{32263}{16}}\right)^{2}=4
Substitute -\frac{32263}{16} for x in the equation \left(\sqrt{2018+x}+\sqrt{2017+x}\right)^{2}=4.
4=4
Simplify. The value x=-\frac{32263}{16} satisfies the equation.
x=-\frac{32263}{16}
Equation 2\sqrt{x+2017}\sqrt{x+2018}=-2x-4031 has a unique solution.