Evaluate
24-2\sqrt{143}\approx 0.083478514
Expand
24-2\sqrt{143}
Share
Copied to clipboard
\left(\sqrt{13}\right)^{2}-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{13}-\sqrt{11}\right)^{2}.
13-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}
The square of \sqrt{13} is 13.
13-2\sqrt{143}+\left(\sqrt{11}\right)^{2}
To multiply \sqrt{13} and \sqrt{11}, multiply the numbers under the square root.
13-2\sqrt{143}+11
The square of \sqrt{11} is 11.
24-2\sqrt{143}
Add 13 and 11 to get 24.
\left(\sqrt{13}\right)^{2}-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{13}-\sqrt{11}\right)^{2}.
13-2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}
The square of \sqrt{13} is 13.
13-2\sqrt{143}+\left(\sqrt{11}\right)^{2}
To multiply \sqrt{13} and \sqrt{11}, multiply the numbers under the square root.
13-2\sqrt{143}+11
The square of \sqrt{11} is 11.
24-2\sqrt{143}
Add 13 and 11 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}