Solve for k
k=1
k=2
Share
Copied to clipboard
\left(\sqrt{1^{2}+5-k}\right)^{2}=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Subtract 2 from 3 to get 1.
\left(\sqrt{1+5-k}\right)^{2}=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Calculate 1 to the power of 2 and get 1.
\left(\sqrt{6-k}\right)^{2}=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Add 1 and 5 to get 6.
6-k=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Calculate \sqrt{6-k} to the power of 2 and get 6-k.
6-k=\left(\sqrt{2^{2}+\left(2-k\right)^{2}}\right)^{2}
Subtract 2 from 4 to get 2.
6-k=\left(\sqrt{4+\left(2-k\right)^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
6-k=\left(\sqrt{4+4-4k+k^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-k\right)^{2}.
6-k=\left(\sqrt{8-4k+k^{2}}\right)^{2}
Add 4 and 4 to get 8.
6-k=8-4k+k^{2}
Calculate \sqrt{8-4k+k^{2}} to the power of 2 and get 8-4k+k^{2}.
6-k-8=-4k+k^{2}
Subtract 8 from both sides.
-2-k=-4k+k^{2}
Subtract 8 from 6 to get -2.
-2-k+4k=k^{2}
Add 4k to both sides.
-2+3k=k^{2}
Combine -k and 4k to get 3k.
-2+3k-k^{2}=0
Subtract k^{2} from both sides.
-k^{2}+3k-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=-\left(-2\right)=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -k^{2}+ak+bk-2. To find a and b, set up a system to be solved.
a=2 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-k^{2}+2k\right)+\left(k-2\right)
Rewrite -k^{2}+3k-2 as \left(-k^{2}+2k\right)+\left(k-2\right).
-k\left(k-2\right)+k-2
Factor out -k in -k^{2}+2k.
\left(k-2\right)\left(-k+1\right)
Factor out common term k-2 by using distributive property.
k=2 k=1
To find equation solutions, solve k-2=0 and -k+1=0.
\left(\sqrt{1^{2}+5-k}\right)^{2}=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Subtract 2 from 3 to get 1.
\left(\sqrt{1+5-k}\right)^{2}=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Calculate 1 to the power of 2 and get 1.
\left(\sqrt{6-k}\right)^{2}=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Add 1 and 5 to get 6.
6-k=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Calculate \sqrt{6-k} to the power of 2 and get 6-k.
6-k=\left(\sqrt{2^{2}+\left(2-k\right)^{2}}\right)^{2}
Subtract 2 from 4 to get 2.
6-k=\left(\sqrt{4+\left(2-k\right)^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
6-k=\left(\sqrt{4+4-4k+k^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-k\right)^{2}.
6-k=\left(\sqrt{8-4k+k^{2}}\right)^{2}
Add 4 and 4 to get 8.
6-k=8-4k+k^{2}
Calculate \sqrt{8-4k+k^{2}} to the power of 2 and get 8-4k+k^{2}.
6-k-8=-4k+k^{2}
Subtract 8 from both sides.
-2-k=-4k+k^{2}
Subtract 8 from 6 to get -2.
-2-k+4k=k^{2}
Add 4k to both sides.
-2+3k=k^{2}
Combine -k and 4k to get 3k.
-2+3k-k^{2}=0
Subtract k^{2} from both sides.
-k^{2}+3k-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-3±\sqrt{9-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Square 3.
k=\frac{-3±\sqrt{9+4\left(-2\right)}}{2\left(-1\right)}
Multiply -4 times -1.
k=\frac{-3±\sqrt{9-8}}{2\left(-1\right)}
Multiply 4 times -2.
k=\frac{-3±\sqrt{1}}{2\left(-1\right)}
Add 9 to -8.
k=\frac{-3±1}{2\left(-1\right)}
Take the square root of 1.
k=\frac{-3±1}{-2}
Multiply 2 times -1.
k=-\frac{2}{-2}
Now solve the equation k=\frac{-3±1}{-2} when ± is plus. Add -3 to 1.
k=1
Divide -2 by -2.
k=-\frac{4}{-2}
Now solve the equation k=\frac{-3±1}{-2} when ± is minus. Subtract 1 from -3.
k=2
Divide -4 by -2.
k=1 k=2
The equation is now solved.
\left(\sqrt{1^{2}+5-k}\right)^{2}=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Subtract 2 from 3 to get 1.
\left(\sqrt{1+5-k}\right)^{2}=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Calculate 1 to the power of 2 and get 1.
\left(\sqrt{6-k}\right)^{2}=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Add 1 and 5 to get 6.
6-k=\left(\sqrt{\left(4-2\right)^{2}+\left(2-k\right)^{2}}\right)^{2}
Calculate \sqrt{6-k} to the power of 2 and get 6-k.
6-k=\left(\sqrt{2^{2}+\left(2-k\right)^{2}}\right)^{2}
Subtract 2 from 4 to get 2.
6-k=\left(\sqrt{4+\left(2-k\right)^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
6-k=\left(\sqrt{4+4-4k+k^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-k\right)^{2}.
6-k=\left(\sqrt{8-4k+k^{2}}\right)^{2}
Add 4 and 4 to get 8.
6-k=8-4k+k^{2}
Calculate \sqrt{8-4k+k^{2}} to the power of 2 and get 8-4k+k^{2}.
6-k+4k=8+k^{2}
Add 4k to both sides.
6+3k=8+k^{2}
Combine -k and 4k to get 3k.
6+3k-k^{2}=8
Subtract k^{2} from both sides.
3k-k^{2}=8-6
Subtract 6 from both sides.
3k-k^{2}=2
Subtract 6 from 8 to get 2.
-k^{2}+3k=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-k^{2}+3k}{-1}=\frac{2}{-1}
Divide both sides by -1.
k^{2}+\frac{3}{-1}k=\frac{2}{-1}
Dividing by -1 undoes the multiplication by -1.
k^{2}-3k=\frac{2}{-1}
Divide 3 by -1.
k^{2}-3k=-2
Divide 2 by -1.
k^{2}-3k+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-3k+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
k^{2}-3k+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(k-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor k^{2}-3k+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
k-\frac{3}{2}=\frac{1}{2} k-\frac{3}{2}=-\frac{1}{2}
Simplify.
k=2 k=1
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}