Solve for x
x=-9
x=3
Graph
Share
Copied to clipboard
\frac{25}{4}+\frac{15}{2}x+\frac{9}{4}x^{2}-x^{2}=40
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{5}{2}+\frac{3}{2}x\right)^{2}.
\frac{25}{4}+\frac{15}{2}x+\frac{5}{4}x^{2}=40
Combine \frac{9}{4}x^{2} and -x^{2} to get \frac{5}{4}x^{2}.
\frac{25}{4}+\frac{15}{2}x+\frac{5}{4}x^{2}-40=0
Subtract 40 from both sides.
-\frac{135}{4}+\frac{15}{2}x+\frac{5}{4}x^{2}=0
Subtract 40 from \frac{25}{4} to get -\frac{135}{4}.
\frac{5}{4}x^{2}+\frac{15}{2}x-\frac{135}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{15}{2}±\sqrt{\left(\frac{15}{2}\right)^{2}-4\times \frac{5}{4}\left(-\frac{135}{4}\right)}}{2\times \frac{5}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{4} for a, \frac{15}{2} for b, and -\frac{135}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{15}{2}±\sqrt{\frac{225}{4}-4\times \frac{5}{4}\left(-\frac{135}{4}\right)}}{2\times \frac{5}{4}}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{15}{2}±\sqrt{\frac{225}{4}-5\left(-\frac{135}{4}\right)}}{2\times \frac{5}{4}}
Multiply -4 times \frac{5}{4}.
x=\frac{-\frac{15}{2}±\sqrt{\frac{225+675}{4}}}{2\times \frac{5}{4}}
Multiply -5 times -\frac{135}{4}.
x=\frac{-\frac{15}{2}±\sqrt{225}}{2\times \frac{5}{4}}
Add \frac{225}{4} to \frac{675}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{15}{2}±15}{2\times \frac{5}{4}}
Take the square root of 225.
x=\frac{-\frac{15}{2}±15}{\frac{5}{2}}
Multiply 2 times \frac{5}{4}.
x=\frac{\frac{15}{2}}{\frac{5}{2}}
Now solve the equation x=\frac{-\frac{15}{2}±15}{\frac{5}{2}} when ± is plus. Add -\frac{15}{2} to 15.
x=3
Divide \frac{15}{2} by \frac{5}{2} by multiplying \frac{15}{2} by the reciprocal of \frac{5}{2}.
x=-\frac{\frac{45}{2}}{\frac{5}{2}}
Now solve the equation x=\frac{-\frac{15}{2}±15}{\frac{5}{2}} when ± is minus. Subtract 15 from -\frac{15}{2}.
x=-9
Divide -\frac{45}{2} by \frac{5}{2} by multiplying -\frac{45}{2} by the reciprocal of \frac{5}{2}.
x=3 x=-9
The equation is now solved.
\frac{25}{4}+\frac{15}{2}x+\frac{9}{4}x^{2}-x^{2}=40
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{5}{2}+\frac{3}{2}x\right)^{2}.
\frac{25}{4}+\frac{15}{2}x+\frac{5}{4}x^{2}=40
Combine \frac{9}{4}x^{2} and -x^{2} to get \frac{5}{4}x^{2}.
\frac{15}{2}x+\frac{5}{4}x^{2}=40-\frac{25}{4}
Subtract \frac{25}{4} from both sides.
\frac{15}{2}x+\frac{5}{4}x^{2}=\frac{135}{4}
Subtract \frac{25}{4} from 40 to get \frac{135}{4}.
\frac{5}{4}x^{2}+\frac{15}{2}x=\frac{135}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{5}{4}x^{2}+\frac{15}{2}x}{\frac{5}{4}}=\frac{\frac{135}{4}}{\frac{5}{4}}
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{15}{2}}{\frac{5}{4}}x=\frac{\frac{135}{4}}{\frac{5}{4}}
Dividing by \frac{5}{4} undoes the multiplication by \frac{5}{4}.
x^{2}+6x=\frac{\frac{135}{4}}{\frac{5}{4}}
Divide \frac{15}{2} by \frac{5}{4} by multiplying \frac{15}{2} by the reciprocal of \frac{5}{4}.
x^{2}+6x=27
Divide \frac{135}{4} by \frac{5}{4} by multiplying \frac{135}{4} by the reciprocal of \frac{5}{4}.
x^{2}+6x+3^{2}=27+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=27+9
Square 3.
x^{2}+6x+9=36
Add 27 to 9.
\left(x+3\right)^{2}=36
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x+3=6 x+3=-6
Simplify.
x=3 x=-9
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}