Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(4+3i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}\right)^{10}+|1-3i|
Multiply both numerator and denominator of \frac{4+3i}{3-4i} by the complex conjugate of the denominator, 3+4i.
\left(\frac{25i}{25}\right)^{10}+|1-3i|
Do the multiplications in \frac{\left(4+3i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
i^{10}+|1-3i|
Divide 25i by 25 to get i.
-1+|1-3i|
Calculate i to the power of 10 and get -1.
-1+\sqrt{10}
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of 1-3i is \sqrt{10}.