Solve for x
x=3
Solve for x (complex solution)
x=\frac{2\pi n_{1}i}{3\ln(\frac{3}{4})}-\frac{\log_{\frac{3}{4}}\left(\frac{262144}{19683}\right)}{3}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\left(\frac{4}{3}\right)^{-9}=\left(\frac{4}{3}\right)^{-3x}
To multiply powers of the same base, add their exponents. Add -4 and -5 to get -9.
\frac{19683}{262144}=\left(\frac{4}{3}\right)^{-3x}
Calculate \frac{4}{3} to the power of -9 and get \frac{19683}{262144}.
\left(\frac{4}{3}\right)^{-3x}=\frac{19683}{262144}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{4}{3}\right)^{-3x})=\log(\frac{19683}{262144})
Take the logarithm of both sides of the equation.
-3x\log(\frac{4}{3})=\log(\frac{19683}{262144})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-3x=\frac{\log(\frac{19683}{262144})}{\log(\frac{4}{3})}
Divide both sides by \log(\frac{4}{3}).
-3x=\log_{\frac{4}{3}}\left(\frac{19683}{262144}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-\frac{9}{-3}
Divide both sides by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}