Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{4}{3}\right)^{-9}=\left(\frac{4}{3}\right)^{-3x}
To multiply powers of the same base, add their exponents. Add -4 and -5 to get -9.
\frac{19683}{262144}=\left(\frac{4}{3}\right)^{-3x}
Calculate \frac{4}{3} to the power of -9 and get \frac{19683}{262144}.
\left(\frac{4}{3}\right)^{-3x}=\frac{19683}{262144}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{4}{3}\right)^{-3x})=\log(\frac{19683}{262144})
Take the logarithm of both sides of the equation.
-3x\log(\frac{4}{3})=\log(\frac{19683}{262144})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-3x=\frac{\log(\frac{19683}{262144})}{\log(\frac{4}{3})}
Divide both sides by \log(\frac{4}{3}).
-3x=\log_{\frac{4}{3}}\left(\frac{19683}{262144}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-\frac{9}{-3}
Divide both sides by -3.