Evaluate
\frac{-3\sqrt{103}i-47}{2}\approx -23.5-15.223337348i
Expand
\frac{-3\sqrt{103}i-47}{2}
Share
Copied to clipboard
\frac{\left(3-i\sqrt{103}\right)^{2}}{2^{2}}
To raise \frac{3-i\sqrt{103}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3-i\sqrt{103}\right)^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{9-6i\sqrt{103}-\left(\sqrt{103}\right)^{2}}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3-i\sqrt{103}\right)^{2}.
\frac{9-6i\sqrt{103}-103}{4}
The square of \sqrt{103} is 103.
\frac{-94-6i\sqrt{103}}{4}
Subtract 103 from 9 to get -94.
\frac{\left(3-i\sqrt{103}\right)^{2}}{2^{2}}
To raise \frac{3-i\sqrt{103}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3-i\sqrt{103}\right)^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{9-6i\sqrt{103}-\left(\sqrt{103}\right)^{2}}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3-i\sqrt{103}\right)^{2}.
\frac{9-6i\sqrt{103}-103}{4}
The square of \sqrt{103} is 103.
\frac{-94-6i\sqrt{103}}{4}
Subtract 103 from 9 to get -94.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}