Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-i\sqrt{103}\right)^{2}}{2^{2}}
To raise \frac{3-i\sqrt{103}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3-i\sqrt{103}\right)^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{9-6i\sqrt{103}-\left(\sqrt{103}\right)^{2}}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3-i\sqrt{103}\right)^{2}.
\frac{9-6i\sqrt{103}-103}{4}
The square of \sqrt{103} is 103.
\frac{-94-6i\sqrt{103}}{4}
Subtract 103 from 9 to get -94.
\frac{\left(3-i\sqrt{103}\right)^{2}}{2^{2}}
To raise \frac{3-i\sqrt{103}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3-i\sqrt{103}\right)^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{9-6i\sqrt{103}-\left(\sqrt{103}\right)^{2}}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3-i\sqrt{103}\right)^{2}.
\frac{9-6i\sqrt{103}-103}{4}
The square of \sqrt{103} is 103.
\frac{-94-6i\sqrt{103}}{4}
Subtract 103 from 9 to get -94.