Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{3}{2}\right)^{2}x^{2}+\left(2x\right)^{2}=\frac{5}{2}x^{2}
Expand \left(\frac{3}{2}x\right)^{2}.
\frac{9}{4}x^{2}+\left(2x\right)^{2}=\frac{5}{2}x^{2}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{9}{4}x^{2}+2^{2}x^{2}=\frac{5}{2}x^{2}
Expand \left(2x\right)^{2}.
\frac{9}{4}x^{2}+4x^{2}=\frac{5}{2}x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{25}{4}x^{2}=\frac{5}{2}x^{2}
Combine \frac{9}{4}x^{2} and 4x^{2} to get \frac{25}{4}x^{2}.
\frac{25}{4}x^{2}-\frac{5}{2}x^{2}=0
Subtract \frac{5}{2}x^{2} from both sides.
\frac{15}{4}x^{2}=0
Combine \frac{25}{4}x^{2} and -\frac{5}{2}x^{2} to get \frac{15}{4}x^{2}.
x^{2}=0
Multiply both sides by \frac{4}{15}, the reciprocal of \frac{15}{4}. Anything times zero gives zero.
x=0 x=0
Take the square root of both sides of the equation.
x=0
The equation is now solved. Solutions are the same.
\left(\frac{3}{2}\right)^{2}x^{2}+\left(2x\right)^{2}=\frac{5}{2}x^{2}
Expand \left(\frac{3}{2}x\right)^{2}.
\frac{9}{4}x^{2}+\left(2x\right)^{2}=\frac{5}{2}x^{2}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{9}{4}x^{2}+2^{2}x^{2}=\frac{5}{2}x^{2}
Expand \left(2x\right)^{2}.
\frac{9}{4}x^{2}+4x^{2}=\frac{5}{2}x^{2}
Calculate 2 to the power of 2 and get 4.
\frac{25}{4}x^{2}=\frac{5}{2}x^{2}
Combine \frac{9}{4}x^{2} and 4x^{2} to get \frac{25}{4}x^{2}.
\frac{25}{4}x^{2}-\frac{5}{2}x^{2}=0
Subtract \frac{5}{2}x^{2} from both sides.
\frac{15}{4}x^{2}=0
Combine \frac{25}{4}x^{2} and -\frac{5}{2}x^{2} to get \frac{15}{4}x^{2}.
x^{2}=0
Multiply both sides by \frac{4}{15}, the reciprocal of \frac{15}{4}. Anything times zero gives zero.
x=\frac{0±\sqrt{0^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±0}{2}
Take the square root of 0^{2}.
x=0
Divide 0 by 2.