Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=\left(\frac{3\sqrt{13}}{13}\right)^{2}+x^{2}
To raise \frac{2\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}}{13^{2}}+x^{2}
To raise \frac{3\sqrt{13}}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}}{13^{2}}+\frac{x^{2}\times 13^{2}}{13^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{13^{2}}{13^{2}}.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Since \frac{\left(3\sqrt{13}\right)^{2}}{13^{2}} and \frac{x^{2}\times 13^{2}}{13^{2}} have the same denominator, add them by adding their numerators.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4\times 3}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
The square of \sqrt{3} is 3.
\frac{12}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Multiply 4 and 3 to get 12.
\frac{12}{9}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{4}{3}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
\frac{4}{3}=\frac{3^{2}\left(\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Expand \left(3\sqrt{13}\right)^{2}.
\frac{4}{3}=\frac{9\left(\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{4}{3}=\frac{9\times 13+x^{2}\times 13^{2}}{13^{2}}
The square of \sqrt{13} is 13.
\frac{4}{3}=\frac{117+x^{2}\times 13^{2}}{13^{2}}
Multiply 9 and 13 to get 117.
\frac{4}{3}=\frac{117+x^{2}\times 169}{13^{2}}
Calculate 13 to the power of 2 and get 169.
\frac{4}{3}=\frac{117+x^{2}\times 169}{169}
Calculate 13 to the power of 2 and get 169.
\frac{4}{3}=\frac{9}{13}+x^{2}
Divide each term of 117+x^{2}\times 169 by 169 to get \frac{9}{13}+x^{2}.
\frac{9}{13}+x^{2}=\frac{4}{3}
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{4}{3}-\frac{9}{13}
Subtract \frac{9}{13} from both sides.
x^{2}=\frac{25}{39}
Subtract \frac{9}{13} from \frac{4}{3} to get \frac{25}{39}.
x=\frac{5\sqrt{39}}{39} x=-\frac{5\sqrt{39}}{39}
Take the square root of both sides of the equation.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=\left(\frac{3\sqrt{13}}{13}\right)^{2}+x^{2}
To raise \frac{2\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}}{13^{2}}+x^{2}
To raise \frac{3\sqrt{13}}{13} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}}{13^{2}}+\frac{x^{2}\times 13^{2}}{13^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{13^{2}}{13^{2}}.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Since \frac{\left(3\sqrt{13}\right)^{2}}{13^{2}} and \frac{x^{2}\times 13^{2}}{13^{2}} have the same denominator, add them by adding their numerators.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4\times 3}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
The square of \sqrt{3} is 3.
\frac{12}{3^{2}}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Multiply 4 and 3 to get 12.
\frac{12}{9}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{4}{3}=\frac{\left(3\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
\frac{4}{3}=\frac{3^{2}\left(\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Expand \left(3\sqrt{13}\right)^{2}.
\frac{4}{3}=\frac{9\left(\sqrt{13}\right)^{2}+x^{2}\times 13^{2}}{13^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{4}{3}=\frac{9\times 13+x^{2}\times 13^{2}}{13^{2}}
The square of \sqrt{13} is 13.
\frac{4}{3}=\frac{117+x^{2}\times 13^{2}}{13^{2}}
Multiply 9 and 13 to get 117.
\frac{4}{3}=\frac{117+x^{2}\times 169}{13^{2}}
Calculate 13 to the power of 2 and get 169.
\frac{4}{3}=\frac{117+x^{2}\times 169}{169}
Calculate 13 to the power of 2 and get 169.
\frac{4}{3}=\frac{9}{13}+x^{2}
Divide each term of 117+x^{2}\times 169 by 169 to get \frac{9}{13}+x^{2}.
\frac{9}{13}+x^{2}=\frac{4}{3}
Swap sides so that all variable terms are on the left hand side.
\frac{9}{13}+x^{2}-\frac{4}{3}=0
Subtract \frac{4}{3} from both sides.
-\frac{25}{39}+x^{2}=0
Subtract \frac{4}{3} from \frac{9}{13} to get -\frac{25}{39}.
x^{2}-\frac{25}{39}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{25}{39}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{25}{39} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{25}{39}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{100}{39}}}{2}
Multiply -4 times -\frac{25}{39}.
x=\frac{0±\frac{10\sqrt{39}}{39}}{2}
Take the square root of \frac{100}{39}.
x=\frac{5\sqrt{39}}{39}
Now solve the equation x=\frac{0±\frac{10\sqrt{39}}{39}}{2} when ± is plus.
x=-\frac{5\sqrt{39}}{39}
Now solve the equation x=\frac{0±\frac{10\sqrt{39}}{39}}{2} when ± is minus.
x=\frac{5\sqrt{39}}{39} x=-\frac{5\sqrt{39}}{39}
The equation is now solved.