Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{25}x^{2}-2x+\frac{25}{4}+\left(\frac{2}{5}-\frac{5}{2}x\right)^{2}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{5}x-\frac{5}{2}\right)^{2}.
\frac{4}{25}x^{2}-2x+\frac{25}{4}+\frac{4}{25}-2x+\frac{25}{4}x^{2}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{5}-\frac{5}{2}x\right)^{2}.
\frac{4}{25}x^{2}-2x+\frac{641}{100}-2x+\frac{25}{4}x^{2}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Add \frac{25}{4} and \frac{4}{25} to get \frac{641}{100}.
\frac{4}{25}x^{2}-4x+\frac{641}{100}+\frac{25}{4}x^{2}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Combine -2x and -2x to get -4x.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Combine \frac{4}{25}x^{2} and \frac{25}{4}x^{2} to get \frac{641}{100}x^{2}.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=2\left(\frac{2}{5}-\frac{5}{2}x\right)\times \frac{2}{5}\times \frac{5}{2}
Calculate \frac{2}{5}-\frac{5}{2}x to the power of 1 and get \frac{2}{5}-\frac{5}{2}x.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=\frac{4}{5}\left(\frac{2}{5}-\frac{5}{2}x\right)\times \frac{5}{2}
Multiply 2 and \frac{2}{5} to get \frac{4}{5}.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=2\left(\frac{2}{5}-\frac{5}{2}x\right)
Multiply \frac{4}{5} and \frac{5}{2} to get 2.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=\frac{4}{5}-5x
Use the distributive property to multiply 2 by \frac{2}{5}-\frac{5}{2}x.
\frac{641}{100}x^{2}-4x+\frac{641}{100}-\frac{4}{5}=-5x
Subtract \frac{4}{5} from both sides.
\frac{641}{100}x^{2}-4x+\frac{561}{100}=-5x
Subtract \frac{4}{5} from \frac{641}{100} to get \frac{561}{100}.
\frac{641}{100}x^{2}-4x+\frac{561}{100}+5x=0
Add 5x to both sides.
\frac{641}{100}x^{2}+x+\frac{561}{100}=0
Combine -4x and 5x to get x.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{641}{100}\times \frac{561}{100}}}{2\times \frac{641}{100}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{641}{100} for a, 1 for b, and \frac{561}{100} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{641}{100}\times \frac{561}{100}}}{2\times \frac{641}{100}}
Square 1.
x=\frac{-1±\sqrt{1-\frac{641}{25}\times \frac{561}{100}}}{2\times \frac{641}{100}}
Multiply -4 times \frac{641}{100}.
x=\frac{-1±\sqrt{1-\frac{359601}{2500}}}{2\times \frac{641}{100}}
Multiply -\frac{641}{25} times \frac{561}{100} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-1±\sqrt{-\frac{357101}{2500}}}{2\times \frac{641}{100}}
Add 1 to -\frac{359601}{2500}.
x=\frac{-1±\frac{\sqrt{357101}i}{50}}{2\times \frac{641}{100}}
Take the square root of -\frac{357101}{2500}.
x=\frac{-1±\frac{\sqrt{357101}i}{50}}{\frac{641}{50}}
Multiply 2 times \frac{641}{100}.
x=\frac{\frac{\sqrt{357101}i}{50}-1}{\frac{641}{50}}
Now solve the equation x=\frac{-1±\frac{\sqrt{357101}i}{50}}{\frac{641}{50}} when ± is plus. Add -1 to \frac{i\sqrt{357101}}{50}.
x=\frac{-50+\sqrt{357101}i}{641}
Divide -1+\frac{i\sqrt{357101}}{50} by \frac{641}{50} by multiplying -1+\frac{i\sqrt{357101}}{50} by the reciprocal of \frac{641}{50}.
x=\frac{-\frac{\sqrt{357101}i}{50}-1}{\frac{641}{50}}
Now solve the equation x=\frac{-1±\frac{\sqrt{357101}i}{50}}{\frac{641}{50}} when ± is minus. Subtract \frac{i\sqrt{357101}}{50} from -1.
x=\frac{-\sqrt{357101}i-50}{641}
Divide -1-\frac{i\sqrt{357101}}{50} by \frac{641}{50} by multiplying -1-\frac{i\sqrt{357101}}{50} by the reciprocal of \frac{641}{50}.
x=\frac{-50+\sqrt{357101}i}{641} x=\frac{-\sqrt{357101}i-50}{641}
The equation is now solved.
\frac{4}{25}x^{2}-2x+\frac{25}{4}+\left(\frac{2}{5}-\frac{5}{2}x\right)^{2}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{5}x-\frac{5}{2}\right)^{2}.
\frac{4}{25}x^{2}-2x+\frac{25}{4}+\frac{4}{25}-2x+\frac{25}{4}x^{2}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{5}-\frac{5}{2}x\right)^{2}.
\frac{4}{25}x^{2}-2x+\frac{641}{100}-2x+\frac{25}{4}x^{2}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Add \frac{25}{4} and \frac{4}{25} to get \frac{641}{100}.
\frac{4}{25}x^{2}-4x+\frac{641}{100}+\frac{25}{4}x^{2}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Combine -2x and -2x to get -4x.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=2\left(\frac{2}{5}-\frac{5}{2}x\right)^{1}\times \frac{2}{5}\times \frac{5}{2}
Combine \frac{4}{25}x^{2} and \frac{25}{4}x^{2} to get \frac{641}{100}x^{2}.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=2\left(\frac{2}{5}-\frac{5}{2}x\right)\times \frac{2}{5}\times \frac{5}{2}
Calculate \frac{2}{5}-\frac{5}{2}x to the power of 1 and get \frac{2}{5}-\frac{5}{2}x.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=\frac{4}{5}\left(\frac{2}{5}-\frac{5}{2}x\right)\times \frac{5}{2}
Multiply 2 and \frac{2}{5} to get \frac{4}{5}.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=2\left(\frac{2}{5}-\frac{5}{2}x\right)
Multiply \frac{4}{5} and \frac{5}{2} to get 2.
\frac{641}{100}x^{2}-4x+\frac{641}{100}=\frac{4}{5}-5x
Use the distributive property to multiply 2 by \frac{2}{5}-\frac{5}{2}x.
\frac{641}{100}x^{2}-4x+\frac{641}{100}+5x=\frac{4}{5}
Add 5x to both sides.
\frac{641}{100}x^{2}+x+\frac{641}{100}=\frac{4}{5}
Combine -4x and 5x to get x.
\frac{641}{100}x^{2}+x=\frac{4}{5}-\frac{641}{100}
Subtract \frac{641}{100} from both sides.
\frac{641}{100}x^{2}+x=-\frac{561}{100}
Subtract \frac{641}{100} from \frac{4}{5} to get -\frac{561}{100}.
\frac{\frac{641}{100}x^{2}+x}{\frac{641}{100}}=-\frac{\frac{561}{100}}{\frac{641}{100}}
Divide both sides of the equation by \frac{641}{100}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{1}{\frac{641}{100}}x=-\frac{\frac{561}{100}}{\frac{641}{100}}
Dividing by \frac{641}{100} undoes the multiplication by \frac{641}{100}.
x^{2}+\frac{100}{641}x=-\frac{\frac{561}{100}}{\frac{641}{100}}
Divide 1 by \frac{641}{100} by multiplying 1 by the reciprocal of \frac{641}{100}.
x^{2}+\frac{100}{641}x=-\frac{561}{641}
Divide -\frac{561}{100} by \frac{641}{100} by multiplying -\frac{561}{100} by the reciprocal of \frac{641}{100}.
x^{2}+\frac{100}{641}x+\left(\frac{50}{641}\right)^{2}=-\frac{561}{641}+\left(\frac{50}{641}\right)^{2}
Divide \frac{100}{641}, the coefficient of the x term, by 2 to get \frac{50}{641}. Then add the square of \frac{50}{641} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{100}{641}x+\frac{2500}{410881}=-\frac{561}{641}+\frac{2500}{410881}
Square \frac{50}{641} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{100}{641}x+\frac{2500}{410881}=-\frac{357101}{410881}
Add -\frac{561}{641} to \frac{2500}{410881} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{50}{641}\right)^{2}=-\frac{357101}{410881}
Factor x^{2}+\frac{100}{641}x+\frac{2500}{410881}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{50}{641}\right)^{2}}=\sqrt{-\frac{357101}{410881}}
Take the square root of both sides of the equation.
x+\frac{50}{641}=\frac{\sqrt{357101}i}{641} x+\frac{50}{641}=-\frac{\sqrt{357101}i}{641}
Simplify.
x=\frac{-50+\sqrt{357101}i}{641} x=\frac{-\sqrt{357101}i-50}{641}
Subtract \frac{50}{641} from both sides of the equation.