Evaluate
-\frac{2863}{4096}\approx -0.698974609
Factor
-\frac{2863}{4096} = -0.698974609375
Share
Copied to clipboard
\frac{28561}{4096}-3\times \left(\frac{13}{8}\right)^{2}+\frac{13}{4}-3
Calculate \frac{13}{8} to the power of 4 and get \frac{28561}{4096}.
\frac{28561}{4096}-3\times \frac{169}{64}+\frac{13}{4}-3
Calculate \frac{13}{8} to the power of 2 and get \frac{169}{64}.
\frac{28561}{4096}-\frac{3\times 169}{64}+\frac{13}{4}-3
Express 3\times \frac{169}{64} as a single fraction.
\frac{28561}{4096}-\frac{507}{64}+\frac{13}{4}-3
Multiply 3 and 169 to get 507.
\frac{28561}{4096}-\frac{32448}{4096}+\frac{13}{4}-3
Least common multiple of 4096 and 64 is 4096. Convert \frac{28561}{4096} and \frac{507}{64} to fractions with denominator 4096.
\frac{28561-32448}{4096}+\frac{13}{4}-3
Since \frac{28561}{4096} and \frac{32448}{4096} have the same denominator, subtract them by subtracting their numerators.
-\frac{3887}{4096}+\frac{13}{4}-3
Subtract 32448 from 28561 to get -3887.
-\frac{3887}{4096}+\frac{13312}{4096}-3
Least common multiple of 4096 and 4 is 4096. Convert -\frac{3887}{4096} and \frac{13}{4} to fractions with denominator 4096.
\frac{-3887+13312}{4096}-3
Since -\frac{3887}{4096} and \frac{13312}{4096} have the same denominator, add them by adding their numerators.
\frac{9425}{4096}-3
Add -3887 and 13312 to get 9425.
\frac{9425}{4096}-\frac{12288}{4096}
Convert 3 to fraction \frac{12288}{4096}.
\frac{9425-12288}{4096}
Since \frac{9425}{4096} and \frac{12288}{4096} have the same denominator, subtract them by subtracting their numerators.
-\frac{2863}{4096}
Subtract 12288 from 9425 to get -2863.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}