Evaluate
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{x^{\frac{432}{5}}w^{864}}
Expand
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{x^{\frac{432}{5}}w^{864}}
Share
Copied to clipboard
\left(\frac{\left(w^{-1}\right)^{\frac{3}{5}}\left(x^{3}\right)^{\frac{3}{5}}\left(z^{2}\right)^{\frac{3}{5}}\left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
Expand \left(w^{-1}x^{3}z^{2}\right)^{\frac{3}{5}}.
\left(\frac{w^{-\frac{3}{5}}\left(x^{3}\right)^{\frac{3}{5}}\left(z^{2}\right)^{\frac{3}{5}}\left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply -1 and \frac{3}{5} to get -\frac{3}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}\left(z^{2}\right)^{\frac{3}{5}}\left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 3 and \frac{3}{5} to get \frac{9}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}\left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 2 and \frac{3}{5} to get \frac{6}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}\left(w^{3}\right)^{\frac{1}{5}}\left(x^{3}\right)^{\frac{1}{5}}\left(y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
Expand \left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}w^{\frac{3}{5}}\left(x^{3}\right)^{\frac{1}{5}}\left(y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 3 and \frac{1}{5} to get \frac{3}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}w^{\frac{3}{5}}x^{\frac{3}{5}}\left(y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 3 and \frac{1}{5} to get \frac{3}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}w^{\frac{3}{5}}x^{\frac{3}{5}}y^{\frac{1}{15}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and \frac{1}{5} to get \frac{1}{15}.
\left(\frac{x^{\frac{9}{5}}z^{\frac{6}{5}}x^{\frac{3}{5}}y^{\frac{1}{15}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
Multiply w^{-\frac{3}{5}} and w^{\frac{3}{5}} to get 1.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To multiply powers of the same base, add their exponents. Add \frac{9}{5} and \frac{3}{5} to get \frac{12}{5}.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{\left(w^{-4}\right)^{-4}\left(x^{-1}\right)^{-4}\left(y^{2}\right)^{-4}\left(z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
Expand \left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{w^{16}\left(x^{-1}\right)^{-4}\left(y^{2}\right)^{-4}\left(z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply -4 and -4 to get 16.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{w^{16}x^{4}\left(y^{2}\right)^{-4}\left(z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply -1 and -4 to get 4.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{w^{16}x^{4}y^{-8}\left(z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 2 and -4 to get -8.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{w^{16}x^{4}y^{-8}z^{\frac{4}{5}}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply -\frac{1}{5} and -4 to get \frac{4}{5}.
\left(\frac{\sqrt[15]{y}z^{\frac{2}{5}}}{y^{-8}x^{\frac{8}{5}}w^{16}}\right)^{54}
Cancel out z^{\frac{4}{5}}x^{\frac{12}{5}} in both numerator and denominator.
\left(\frac{z^{\frac{2}{5}}y^{\frac{121}{15}}}{x^{\frac{8}{5}}w^{16}}\right)^{54}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(z^{\frac{2}{5}}y^{\frac{121}{15}}\right)^{54}}{\left(x^{\frac{8}{5}}w^{16}\right)^{54}}
To raise \frac{z^{\frac{2}{5}}y^{\frac{121}{15}}}{x^{\frac{8}{5}}w^{16}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(z^{\frac{2}{5}}\right)^{54}\left(y^{\frac{121}{15}}\right)^{54}}{\left(x^{\frac{8}{5}}w^{16}\right)^{54}}
Expand \left(z^{\frac{2}{5}}y^{\frac{121}{15}}\right)^{54}.
\frac{z^{\frac{108}{5}}\left(y^{\frac{121}{15}}\right)^{54}}{\left(x^{\frac{8}{5}}w^{16}\right)^{54}}
To raise a power to another power, multiply the exponents. Multiply \frac{2}{5} and 54 to get \frac{108}{5}.
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{\left(x^{\frac{8}{5}}w^{16}\right)^{54}}
To raise a power to another power, multiply the exponents. Multiply \frac{121}{15} and 54 to get \frac{2178}{5}.
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{\left(x^{\frac{8}{5}}\right)^{54}\left(w^{16}\right)^{54}}
Expand \left(x^{\frac{8}{5}}w^{16}\right)^{54}.
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{x^{\frac{432}{5}}\left(w^{16}\right)^{54}}
To raise a power to another power, multiply the exponents. Multiply \frac{8}{5} and 54 to get \frac{432}{5}.
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{x^{\frac{432}{5}}w^{864}}
To raise a power to another power, multiply the exponents. Multiply 16 and 54 to get 864.
\left(\frac{\left(w^{-1}\right)^{\frac{3}{5}}\left(x^{3}\right)^{\frac{3}{5}}\left(z^{2}\right)^{\frac{3}{5}}\left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
Expand \left(w^{-1}x^{3}z^{2}\right)^{\frac{3}{5}}.
\left(\frac{w^{-\frac{3}{5}}\left(x^{3}\right)^{\frac{3}{5}}\left(z^{2}\right)^{\frac{3}{5}}\left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply -1 and \frac{3}{5} to get -\frac{3}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}\left(z^{2}\right)^{\frac{3}{5}}\left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 3 and \frac{3}{5} to get \frac{9}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}\left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 2 and \frac{3}{5} to get \frac{6}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}\left(w^{3}\right)^{\frac{1}{5}}\left(x^{3}\right)^{\frac{1}{5}}\left(y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
Expand \left(w^{3}x^{3}y^{\frac{1}{3}}\right)^{\frac{1}{5}}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}w^{\frac{3}{5}}\left(x^{3}\right)^{\frac{1}{5}}\left(y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 3 and \frac{1}{5} to get \frac{3}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}w^{\frac{3}{5}}x^{\frac{3}{5}}\left(y^{\frac{1}{3}}\right)^{\frac{1}{5}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 3 and \frac{1}{5} to get \frac{3}{5}.
\left(\frac{w^{-\frac{3}{5}}x^{\frac{9}{5}}z^{\frac{6}{5}}w^{\frac{3}{5}}x^{\frac{3}{5}}y^{\frac{1}{15}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and \frac{1}{5} to get \frac{1}{15}.
\left(\frac{x^{\frac{9}{5}}z^{\frac{6}{5}}x^{\frac{3}{5}}y^{\frac{1}{15}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
Multiply w^{-\frac{3}{5}} and w^{\frac{3}{5}} to get 1.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{\left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To multiply powers of the same base, add their exponents. Add \frac{9}{5} and \frac{3}{5} to get \frac{12}{5}.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{\left(w^{-4}\right)^{-4}\left(x^{-1}\right)^{-4}\left(y^{2}\right)^{-4}\left(z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
Expand \left(w^{-4}x^{-1}y^{2}z^{-\frac{1}{5}}\right)^{-4}.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{w^{16}\left(x^{-1}\right)^{-4}\left(y^{2}\right)^{-4}\left(z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply -4 and -4 to get 16.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{w^{16}x^{4}\left(y^{2}\right)^{-4}\left(z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply -1 and -4 to get 4.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{w^{16}x^{4}y^{-8}\left(z^{-\frac{1}{5}}\right)^{-4}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply 2 and -4 to get -8.
\left(\frac{x^{\frac{12}{5}}z^{\frac{6}{5}}y^{\frac{1}{15}}}{w^{16}x^{4}y^{-8}z^{\frac{4}{5}}}\right)^{54}
To raise a power to another power, multiply the exponents. Multiply -\frac{1}{5} and -4 to get \frac{4}{5}.
\left(\frac{\sqrt[15]{y}z^{\frac{2}{5}}}{y^{-8}x^{\frac{8}{5}}w^{16}}\right)^{54}
Cancel out z^{\frac{4}{5}}x^{\frac{12}{5}} in both numerator and denominator.
\left(\frac{z^{\frac{2}{5}}y^{\frac{121}{15}}}{x^{\frac{8}{5}}w^{16}}\right)^{54}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(z^{\frac{2}{5}}y^{\frac{121}{15}}\right)^{54}}{\left(x^{\frac{8}{5}}w^{16}\right)^{54}}
To raise \frac{z^{\frac{2}{5}}y^{\frac{121}{15}}}{x^{\frac{8}{5}}w^{16}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(z^{\frac{2}{5}}\right)^{54}\left(y^{\frac{121}{15}}\right)^{54}}{\left(x^{\frac{8}{5}}w^{16}\right)^{54}}
Expand \left(z^{\frac{2}{5}}y^{\frac{121}{15}}\right)^{54}.
\frac{z^{\frac{108}{5}}\left(y^{\frac{121}{15}}\right)^{54}}{\left(x^{\frac{8}{5}}w^{16}\right)^{54}}
To raise a power to another power, multiply the exponents. Multiply \frac{2}{5} and 54 to get \frac{108}{5}.
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{\left(x^{\frac{8}{5}}w^{16}\right)^{54}}
To raise a power to another power, multiply the exponents. Multiply \frac{121}{15} and 54 to get \frac{2178}{5}.
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{\left(x^{\frac{8}{5}}\right)^{54}\left(w^{16}\right)^{54}}
Expand \left(x^{\frac{8}{5}}w^{16}\right)^{54}.
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{x^{\frac{432}{5}}\left(w^{16}\right)^{54}}
To raise a power to another power, multiply the exponents. Multiply \frac{8}{5} and 54 to get \frac{432}{5}.
\frac{z^{\frac{108}{5}}y^{\frac{2178}{5}}}{x^{\frac{432}{5}}w^{864}}
To raise a power to another power, multiply the exponents. Multiply 16 and 54 to get 864.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}