Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4^{2}}+\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)^{2}
To raise \frac{\sqrt{6}-\sqrt{2}}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
To raise \frac{\sqrt{6}+\sqrt{2}}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}+\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
Since \frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4^{2}} and \frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-\sqrt{2}\right)^{2}.
\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
The square of \sqrt{6} is 6.
\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
Multiply -2 and 2 to get -4.
\frac{6-4\sqrt{3}+2}{4^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
The square of \sqrt{2} is 2.
\frac{8-4\sqrt{3}}{4^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
Add 6 and 2 to get 8.
\frac{8-4\sqrt{3}}{16}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{4^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{8-4\sqrt{3}}{16}+\frac{\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+\sqrt{2}\right)^{2}.
\frac{8-4\sqrt{3}}{16}+\frac{6+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
The square of \sqrt{6} is 6.
\frac{8-4\sqrt{3}}{16}+\frac{6+2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{8-4\sqrt{3}}{16}+\frac{6+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{8-4\sqrt{3}}{16}+\frac{6+4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Multiply 2 and 2 to get 4.
\frac{8-4\sqrt{3}}{16}+\frac{6+4\sqrt{3}+2}{4^{2}}
The square of \sqrt{2} is 2.
\frac{8-4\sqrt{3}}{16}+\frac{8+4\sqrt{3}}{4^{2}}
Add 6 and 2 to get 8.
\frac{8-4\sqrt{3}}{16}+\frac{8+4\sqrt{3}}{16}
Calculate 4 to the power of 2 and get 16.
\frac{8-4\sqrt{3}+8+4\sqrt{3}}{16}
Since \frac{8-4\sqrt{3}}{16} and \frac{8+4\sqrt{3}}{16} have the same denominator, add them by adding their numerators.
\frac{16}{16}
Do the calculations in 8-4\sqrt{3}+8+4\sqrt{3}.